Türkçe

The Boston University research team developed a high-throughput single-cell sorting technique based on stimulated Raman spectroscopy

513
2023-09-07 14:47:36
Çeviriyi gör

A Boston University research project has successfully developed an innovative single-cell sorting technique that uses stimulated Raman spectroscopy to replace traditional fluorescent labeling and achieve labeling free and non-destructive single-cell measurements.

This technology is expected to have a profound impact in the fields of cytology, microbiology and biomedical research, allowing scientists to directly capture pathogens or cells with specific metabolic characteristics from the natural environment.

Stimulated Raman is used to separate cells

Research background

Flow cytometry is a well-established technique for counting and characterizing cells, including blood cells, stem cells, and cancer cells in biomedicine. The idea is to illuminate the cells as they pass through a channel narrow enough to force them to roughly line up, usually after labeling them with a fluorescent label.

This technique typically uses fluorescent labeling to distinguish and identify different types of cells, as fluorescent labeling allows scientists to determine a cell's identity by detecting the fluorescent signal it emits. Then, by analyzing these signals, high-throughput single-cell sorting and analysis can be performed.

However, traditional flow cytometry has some disadvantages, one of which is that fluorescent labeling may affect the biological activity of cells and require additional experimental steps. Therefore, researchers have been looking for labeling free and non-invasive methods for single cell measurement and sorting, and stimulated Raman spectroscopy is one of the innovative directions.

Stimulated Raman spectroscopy

The Boston University research team used stimulated Raman spectroscopy, an innovative approach that allows individual cells to be measured for their unique chemical fingerprints without the need for fluorescent labeling. The technique utilizes a 532 nm laser monopulse to focus light on the target cell and push it into the collector, enabling high-throughput single-cell sorting.

Experimental result

In experiments, the technique was applied to a mixture of 1 micron polymer beads, which were sorted approximately 14 times per second, achieving approximately 95% purity and 98% throughput. The technique can also be used for sorting fixed bacteria. In addition, tests on active yeast cells showed that the sorted cells were still able to maintain healthy growth.

Application prospect

The new stimulated Raman spectral sorting technique provides scientists with an innovative, high-throughput way to classify cells based on their chemical composition within them. This has broad applications for microbiology, biomedical research, and the direct capture of pathogens or cells with specific metabolic characteristics from the natural environment. This technology is expected to advance the development of cytology, microbiology and biomedical research, providing new tools and methods for medical diagnosis and life science research.

Source: Chinese Optical Journal Network

İlgili öneriler
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    Çeviriyi gör
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    Çeviriyi gör
  • Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

    Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect o...

    2024-06-05
    Çeviriyi gör
  • Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

    Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.Fi...

    2023-09-13
    Çeviriyi gör
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    Çeviriyi gör