Türkçe

Shanghai Institute of Optics and Mechanics proposes a new solution for quartz glass as a visible light laser material

383
2024-06-05 15:33:45
Çeviriyi gör

Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on rare earth ions Dy3+doped quartz glass as a yellow laser material, and the relevant research results were published in the Journal of the American Ceramic Society as "Effect of P/Al ratio on the X ray induced darkness in Dy doped silica glasses at visible wavelengths".

At present, Dy3+doped yellow light lasers have important application potential in fields such as Bose Einstein condensation and photocoagulation therapy. Fluoride fiber matrix is widely used as the main material for visible light gain fibers due to its low phonon distribution. However, fluoride optical fibers have limitations such as poor chemical stability and mechanical properties, as well as harsh preparation conditions, which greatly increase the cost and difficulty of preparation. In contrast, quartz glass matrix has achieved rapid development due to its excellent physical and chemical properties, mechanical properties, and optical properties, and has successfully achieved yellow light laser output of Dy3+ions. However, Dy3+doped quartz fibers suffer from photon darkening under blue light excitation, which limits the further improvement of output power. Therefore, how to suppress light dimming has become a key scientific problem that urgently needs to be solved in the field of visible light lasers.

The research team proposes a new scheme for anti photon darkening Dy3+doped quartz glass. This scheme significantly reduces the absorption loss caused by irradiation by increasing the P/Al ratio, suppressing the valence change of Dy ions and the formation of defects such as Al OHC from within the glass matrix. In quartz glass, Al is a commonly used rare earth ion dispersant that can improve the dispersion and solubility of rare earth ions. However, due to the mismatch between the valence state of Al3+in quartz glass and the matrix Si, defects such as hole center Al-OHC are easily generated after absorbing a certain amount of energy (blue light, ultraviolet radiation). The introduction of P can form a valence equilibrium and stable [PAlO4] structural group with Al, which suppresses the formation of Al related defects and improves the anti darkening performance of Dy doped quartz glass. This work provides key materials and method support for visible light fiber lasers.

The relevant research has been supported by projects such as the National Natural Science Foundation of China.

Figure 1: Increasing the P/Al ratio suppresses defects induced by irradiation in quartz glass

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

İlgili öneriler
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    Çeviriyi gör
  • The research team at the University of Electronic Science and Technology of China has developed three innovative photonic devices

    Recently, Professor Nie Mingming from the Key Laboratory of Fiber Optic Sensing and Communication at the School of Information and Communication Engineering, University of Electronic Science and Technology of China, in collaboration with the University of Colorado Boulder, published a research paper titled "Cross polarized stimulated Brillouin scattering empowered photonics" in the top internation...

    05-30
    Çeviriyi gör
  • New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

    Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical comp...

    2024-04-02
    Çeviriyi gör
  • Innovative laser technology: a novel quantum cavity model for superradiance emission

    Quantum optics is a complex field where theoretical and experimental physicists collaborate to achieve breakthroughs in explaining subatomic level phenomena.Recently, Farokh Mivehvar from the University of Innsbruck used the most comprehensive model in quantum optics, the Dicke model, to study the interaction between two groups of atoms in a quantized field. This new study makes it possible to obs...

    2024-03-16
    Çeviriyi gör
  • Aerotech announces new control features for laser scanning heads

    Aerotech has upgraded the performance of AGV laser scanning heads through powerful controller functions to enhance scanner control (ESC). The new ESC function of the Automation 1-GL4 2-axis laser scanning head driver is a completely passive control loop enhancement function that ensures higher accuracy in the most dynamic motion.With the increasing demand for higher output laser technology in vari...

    2024-06-04
    Çeviriyi gör