Türkçe

Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

415
2023-09-13 14:15:46
Çeviriyi gör

Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.

Figure 1: TruTops Print allows users to print parts with cantilever angles as low as 15 degrees without the need for a support structure

"The latest version of Trumpf's TruTops Print software virtually eliminates the need for support materials, which means faster build times and lower material consumption." According to Lukas Gebhard, additive manufacturing process development engineer from toolcraft, "Unsupported printing brings parts close to their final shape, opening the door to parts and projects that were not possible before, such as near-net form fabrication of large diameter internal cooling channels."

Previously, users had to print the support structure along with the part to secure the part to the build platform, while also being used to cool the part to prevent internal tension and deformation during printing. Today, Trumpf's innovative technology means that many 3D printing applications can be carried out unsupported, even when working with difficult-to-process materials such as stainless steel.

Figure 2: Unbraced 3D printing technology is particularly suitable for parts with large cavities or challenging cantilevers

Software opens new 3D printing strategy

Timo Degen, Product Manager for Additive Manufacturing at TRUMPF, said: "When 3D printing a part, we want to be able to precisely control when and where the material melts and resolidifies. The key is to choose the right exposure strategy to prevent internal tension and overheating in the cantilever area." TruTops Print enables the 3D printer to use the best printing strategy for each different area of the part, eliminating the need for support structures. At the same time, the improved wind field of TrumPF's new 3D printer meets the requirements of uniform processing conditions and unsupported printing.

Figure 3: TruTops Print enables the 3D printer to use the optimal printing strategy for each different area of the part, eliminating the need for support structures

Unsupported 3D printing technology opens up new applications

Timo Degen, product manager for Additive Manufacturing at TRUMPF, notes that the propping-free printing technology is particularly suitable for challenging situations with large cavities or cantilever components, such as parts such as water tanks, heat exchangers, hydraulic blocks and molds. This new technology also opens up applications that were previously not fully utilized, including additively manufactured radial compressors and shroud impels. In the past, because of the impeller's cantilever Angle, manufacturers were unable to print impellers that did not require support. "The demand for support meant that 3D printing could not economically replace traditional manufacturing, but that has now changed," Degen said.

About TRUMpf

Trumpf is a high-tech company that provides manufacturing solutions in the field of machine tools and laser technology. The company drives digital connectivity in manufacturing through consulting, platform products and software, and TRUMPF is a technology and market leader in flexible sheet metal processing machines and industrial lasers.

In 2022/23, the company employed around 17,900 people and generated sales of 5.4 billion euros (preliminary figures). The TrumPF Group has more than 90 companies and is present in almost all European countries as well as in North America, South America and Asia. The company has production sites in Germany, France, the United Kingdom, Italy, Austria, Switzerland, Poland, the Czech Republic, the United States, Mexico and China.

Source: TRUMPF

İlgili öneriler
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    Çeviriyi gör
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    Çeviriyi gör
  • Progress in the Application of China University of Science and Technology's Femtosecond Laser Processing Technology in the Biomedical Field

    Recently, Associate Professor Li Jiawen's research group at the Micro and Nano Engineering Laboratory of the School of Engineering Science, University of Science and Technology of China proposed a femtosecond laser dynamic holographic processing method suitable for efficient construction of three-dimensional capillary scaffolds, which is used to generate a three-dimensional capillary network. This...

    2024-02-11
    Çeviriyi gör
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    Çeviriyi gör
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Çeviriyi gör