Türkçe

Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

325
2023-08-24 11:15:32
Çeviriyi gör

On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.

It is reported that this module can generate 1.5 μ The m-wavelength signal was installed on the OPTIMAL-1 nanosatellite jointly developed by industry, academia, and research, and was successfully launched from the International Space Station (ISS) on January 6 this year.

Compared to using traditional large satellites, using nanosatellites enables this demonstration to be carried out at a faster speed and at a lower cost.

Mitsubishi Electric has been developing space based optical technology, which has the potential to increase data capacity (ten times or more), communication speed, and distance compared to systems using radio waves.

Satellite images are increasingly being used to assess the situation in post disaster areas and the condition of remote forest resources. The existing radio wave satellite communication systems are limited in terms of capacity, speed, and distance, so it is necessary to provide new optical systems that improve communication capabilities for faster and higher resolution evaluations from space.

Advanced systems using laser signals are expected to be increasingly adopted, not only because of their superior communication capabilities, but also because they use shorter wavelengths than radio waves, allowing for the use of relatively small and easy to install ground antennas.

Laser communication between satellites requires correction for the "Doppler effect" - the Doppler effect, which is a change in laser optical frequency caused by differences in relative motion speeds between satellites. The new light source module is deployed as the world's first to utilize a wavelength of 1.5 μ The laser frequency can be adjusted to 60 GHz in space, which is enough for "Doppler effect" compensation.

The nanosatellites developed through industry university research cooperation projects require only about one-third of the time required for demonstration in outer space compared to large-scale satellite demonstrations, and the development cost is only one percent of that of large-scale satellite demonstrations.

Takayoshi Fukuyo, CEO of ArkEdge Space Inc., said, "In recent years, the development momentum of nanosatellites has been continuously increasing. Nanosatellites weighing only a few kilograms can be developed and launched at low cost, so they are expected to be used for new applications, such as using a large number of satellites to observe the Earth extensively. The successful demonstration of light source modules on OPTIMAL-1 is expected to drive the deployment of nanosatellites.

Professor Yoshihide Aoyanagi from the University of Fukui said, "The conditions in outer space, including radiation, vacuum, and temperature, create harsh environments for equipment, so demonstrating the ability to operate in space is crucial for the development of satellites. I hope that the successful demonstration of OPTIMAL-1 will promote further progress in the industrial use of nanosatellites.

Future development

Mitsubishi Electric will propose demonstration technologies for large-scale space development projects. In addition, the company will promote nanosatellites as an important demonstration platform for space-related research and development through industry university research cooperation. Mitsubishi Electric will continue to pursue technological development aimed at achieving space-based laser optical communication as soon as possible.

Source: OFweek

İlgili öneriler
  • Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

    Research backgroundIn transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as inco...

    2023-10-16
    Çeviriyi gör
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Çeviriyi gör
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    Çeviriyi gör
  • Precision laser manufacturer Preco appoints Jacob Brunsberg as CEO

    Recently, Preco, a leading enterprise in precision laser material processing and laser equipment manufacturing solutions, officially announced a major personnel appointment: Jacob Brunsberg, an outstanding senior manufacturing and technology management expert, has been appointed as its CEO. Mr. Brunsberg is a renowned senior manager in the field of advanced manufacturing and technology, with man...

    2024-09-23
    Çeviriyi gör
  • Frankfurt Laser Company launches a new high-power fiber coupled laser diode

    The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.The New Era of Laser TechnologyThe latest pr...

    2024-05-13
    Çeviriyi gör