Türkçe

Magdalena Ridge expands the capacity of optical interferometers

206
2024-01-05 14:17:47
Çeviriyi gör

The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.

Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple telescopes, allowing them to function together as a larger "virtual telescope". The light waves emitted by each telescope are combined together to make them brighter. Interferometry can provide a more detailed view of darker objects.

The mission of the Magdalena Ridge Observatory Interferometer Project is to develop a ten element imaging interferometer with a working wavelength between 0.6 and 2.4 microns and a baseline of 7.8 to 340 meters. The technical and scientific goal of interferometers is to generate images of weak and complex astronomical targets independent of the model at a resolution of over 100 times that of the Hubble Space Telescope.

Dr. Michelle Creech Eakman, a physics professor at MRO, commented: In order to minimize the diffraction effect of long-distance propagation, the original 7.5x off-axis beam compressor provided by Optical Surface was designed to allow for a reduction in the size of a 95mm star beam for final division between instruments on the telescope. Due to the excellent performance of this optical system, we decided to obtain a single source of three second-generation beam compressors from the optical surface, which provide a better field of view to help dry Involving alignment. These beam compressors will be key components in MROI as they will enable us to operate in smaller beam spaces outside the vacuum system. We hope to obtain the first batch of margins in the first half of 2024.

Dr. Aris Kouris, Sales Director of Optical Surface, added: Our beam compressor for MROI is located in the Magdalena Mountains at an altitude of 10600 feet, with significant temperature changes. This means that we need to incorporate invar element rods into the beam compressor design to improve heating stability. Our beam compressor uses high-precision off-axis mirrors, which can provide unobstructed output and efficient transmission. The beam compressor reduces the diameter of the collimated input beam to a smaller collimated output light The preferred optical tool for beams.

Source: Laser Net

İlgili öneriler
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Çeviriyi gör
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    Çeviriyi gör
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    Çeviriyi gör
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Çeviriyi gör
  • Hexconn announces the launch of a new modular 3D laser scanner designed specifically for large-scale surface inspection

    The new Absolute Scanner AS1-XL adopts the same "Shine" technology as its flagship product Absolute Scanner AS1, allowing it to collect clean 3D data from the most challenging surface types at a very high speed.The new scanner has a wider scanning line and is designed specifically for inspecting large surfaces and deep cavities in inspection applications such as aerospace panels, ship propellers, ...

    2023-09-27
    Çeviriyi gör