Türkçe

Fraunhofer ILT utilizes short pulse lasers to achieve high-speed optical stamping

527
2025-09-25 11:25:05
Çeviriyi gör

At the Fraunhofer Institute for Laser Technology (ILT), researchers in collaboration with RWTH Aachen University – Chair for Technology of Optical Systems (RWTH-TOS) are using a spatial light modulator (SLM) to shape the beam of an ultrashort pulse laser precisely into the desired pattern to apply to the surface of a workpiece.
The developers say that this approach “significantly speeds up processing and opens up new possibilities for, among others, the steel and metalworking industries or the glass industry.”

Initial tests have show that process times can be reduced by at least 80 percent. Such a surface treatment process offers advantages over wet chemical etching and electrical discharge machining.

Wet chemical etching not only produces waste that is harmful to health and the environment, but the process is also inflexible because it requires masks. Electrical discharge machining (EDM) also has its disadvantages: It consumes a great deal of energy, produces toxic sludge, and only delivers random, stochastic microstructures. Unlike the laser process, the surface properties cannot be specifically tailored to subsequent process steps.

 



Optical stamping process. Click for info


Precision patterning

“The optical stamping process allows this problem to be circumvented,” said Sönke Vogel from the Micro and Nano Structuring Group at ILT. Vogel and his team use an SLM to precisely shape the beam of a USP laser into the desired pattern and apply it to the workpiece surface in a single step.

“This creates microstructures that are precise, reproducible, and made in a fraction of the time previously required, with significantly less wear and tear compared to mechanical processes and without the need to retool the optics,” he said.
In optical stamping, the laser beam is not guided across the surface in a vector-based manner using scanner mirrors, but is shaped into the desired structural pattern in a single step and transferred directly to the workpiece. The core component is an SLM with Liquid Crystal on Silicon technology.

Paul Buske, Computational Optics at RWTH-TOS, develops phase masks for the SLM using optical neural networks. Each phase mask corresponds to an optically realized plane, and wave optics methods are used to calculate the connections between these planes.

“Thanks to established AI training methods, optical neural networks enable unprecedented flexibility in beam shaping,” said Buske. “Pattern sizes and geometries can be varied, expanded, or completely replaced.”

Thanks to this innovation, industry can generate deterministic microstructures with precisely reproducible geometry, reduce processing times significantly, and adapt structures to the specific requirements of individual components or subsequent processes.

 



Optical stamping allows a pattern to be flexibly adjusted


Targeted microstructures for steel
In flat steel production, for example, the surfaces of embossing rolls have so far mostly been microstructured stochastically using EDM. Although the structures embossed in this way improve properties such as the bendability or adhesion of coatings, they are not tailored to specific subsequent processes.

In the EU project METAMORPHA, ILT and RWTH-TOS are pursuing a different approach together with project partners such as Thyssenkrupp Steel Europe. The project aims to develop innovative surfaces and thus sustainably improve the quality of European flat steel products. The partners have demonstrated an 81 percent reduction in process time.

“The collaboration in the METAMORPHA project shows us how laser processes can be transferred directly into industrial practice," said Benjamin Lauer, project manager at Thyssen Krupp Steel Europe.

 

3D surface profile of an optically stamped microstructure


Fast structuring for signal transmission

Another technology demonstration involves low emissivity glass, an ultra-thin metal layer on glass that reflects heat radiation. However, this coating also blocks mobile phone signals. To enable reception, the metal layer must be partially removed – usually a time-consuming process with a scanning single-beam USP laser. Optical stamping allows precise openings to be made in the coating in a single pulse without subjecting the glass to thermal stress. The USP laser removes the layer with pinpoint accuracy while leaving the substrate undamaged.

In tests at Fraunhofer ILT, the beam was shaped into a circular pattern with a diameter of 450 µm using an SLM and applied at a feed rate of 9 m/s, a pulse energy of 200 µJ, and a repetition rate of 20 kHz. The result: clear, sharply defined structures that allow radio waves to pass through without significantly impairing the thermal insulation. Compared to conventional scanning at 3 m/s, 600 kHz, and 4 µJ per pulse, the processing speed and area rate were dramatically increased by a factor of 30.

Source: optics.org

İlgili öneriler
  • Researchers propose NeuFlow: an efficient optical flow architecture that can solve high-precision and computational cost issues

    Real time and high-precision optical flow estimation is crucial for analyzing dynamic scenes in computer vision. Although traditional methods are fundamental, they often encounter issues with computation and accuracy, especially when executed on edge devices. The emergence of deep learning has driven the development of this field, providing higher accuracy, but at the cost of sacrificing computati...

    2024-03-23
    Çeviriyi gör
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Çeviriyi gör
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    Çeviriyi gör
  • Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

    On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.It is reported that this module can generate 1.5 &mu...

    2023-08-24
    Çeviriyi gör
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    Çeviriyi gör