Türkçe

The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

989
2023-12-13 14:17:56
Çeviriyi gör

The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.

The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of searching for extraterrestrial life.
This technology has also been implemented at the La Silla Observatory of the European Southern Observatory in Chile.

The NIRPS alliance is expanding research on exoplanets
Through collaboration, researchers hope to expand research on exoplanets. Exoplanets are described as "cosmic nomads" and have been attracting scientists for about thirty years.

The NIRPS alliance aims to measure their weight, temperature, and atmosphere. NIRPS is a highly advanced spectrometer that can carefully examine the light emitted by distant stars and detect changes caused by the gravitational pull of planets in their orbits.

Implementing laser frequency comb technology
Now, the NIRPS spectrometer has been implemented together with the laser frequency comb developed by CSEM. The light generated by this device has a stable spectrum, characterized by uniformly distributed lines.

Laser frequency comb helps to measure the radial velocity of stars as an optical reference. This indicator is important for understanding the speed at which stars approach or move away from us.

The laser frequency comb installed at the La Silla Observatory in Chile calibrates the NIRPS spectrometer to high accuracy. Therefore, the NIRPS alliance will be able to discover the behavior of exoplanets similar to Earth, thus ushering in a new era of space exploration and discovery.

Christopher Bonzon, CSEM Laser Technology Manager, said, "CSEM's laser frequency comb technology is a microcosm of spectral accuracy and stability. The system uses electro-optic modulation to generate equidistant laser lines locked in molecular transitions, with intervals of exactly 15 GHz, far exceeding the scope of competing technologies.".

"The function of frequency combs in the spectral domain is like a ruler, providing a reference for matching data for NIRPS spectrometers over the years."

A high-performance spectrometer for discovering extraterrestrial life
Exoplanets are fascinating and complex, revealing new insights into the origin of planetary systems.
This collaboration represents an important milestone in understanding exoplanets and searching for extraterrestrial life.

Professor Fran ç ois Bouchy, Joint Chief Researcher of the NIRPS Alliance, said, "We are very proud to collaborate with CSEM on this exciting project. Their laser frequency comb technology is crucial for achieving the high performance and long-term reliability required for NIRPS spectrometers.".
We hope to make new discoveries together and contribute to the advancement of exoplanet science.

Source: Laser Net

İlgili öneriler
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    Çeviriyi gör
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Çeviriyi gör
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    Çeviriyi gör
  • The research team at the University of Electronic Science and Technology of China has developed three innovative photonic devices

    Recently, Professor Nie Mingming from the Key Laboratory of Fiber Optic Sensing and Communication at the School of Information and Communication Engineering, University of Electronic Science and Technology of China, in collaboration with the University of Colorado Boulder, published a research paper titled "Cross polarized stimulated Brillouin scattering empowered photonics" in the top internation...

    05-30
    Çeviriyi gör
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Çeviriyi gör