Türkçe

Micro optical technology based on metasurfaces has become a hot topic

515
2024-02-02 18:01:29
Çeviriyi gör

Introduction and application of a micro optical platform using metasurfaces
Metasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR optical systems.

If metasurfaces overcome the challenges of complex manufacturing processes and high production costs and become commercially viable, South Korea may gain significant technological advantages in the field of nanooptics.

A collaborative research group led by Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering, along with doctoral students Younghuan Yang, Junhwa Seong, Minseok Choi, and Junkyeong Park (co first authors) from the Department of Mechanical Engineering at Pohang University of Science and Technology, as well as Dr. Gyoseon Jeon, Dr. Kyong il Lee, and Dr. Dong Hyun Yoon from the Institute of Industrial Science and Technology (RIST), published a paper in "Light: Science and Applications".

The title is "Integrated metasurfaces for re vision a near future disruptive optical platform", which summarizes the recent research trends of micro optical platforms based on metasurfaces. They also proposed future research directions and commercialization methods in the journal.

Throughout history, metasurface research has focused on fully manipulating the properties of light, resulting in various optical devices such as metal sensors, metal holograms, and beam diffraction devices. However, recent research has shifted their focus to integrating metasurfaces with other optical components.

The overall concept and prospects of metasurface integration
The research team proposed the research and application of integrated metasurfaces in the paper. These integrated metasurfaces are optical components that can be combined with various standard optical components, such as light-emitting diodes (LEDs) and liquid crystal displays (LCDs). In order to achieve commercialization of metasurfaces, the research team suggests that future research in this field should focus on how to integrate metasurfaces into commonly used devices, making them suitable for daily life.

In addition, the research team emphasized the importance of cooperation between industry and academia, and emphasized the impact of metasurface research on the future optical device industry and national competitiveness. They emphasized that support and cooperation at the national level are crucial for the development of innovative optical platforms.

Professor Junsuk Rho explained, "Integrated metasurfaces are a supplement to existing electronic technologies and represent another innovative solution for various applications. I hope to have sustained efforts, research, and national support to produce more innovative results."

Source: Sohu

İlgili öneriler
  • Research and investigate the thermal effects of 3D stacked photons and electronic chips

    Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.The latest progress in artificial intelligence, more specifically, is the pressure plac...

    2023-12-09
    Çeviriyi gör
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    Çeviriyi gör
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    Çeviriyi gör
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Çeviriyi gör
  • Germany's TRUMPF launches 50000 watt fiber laser

    TRUMPF will launch a new generation of efficient fiber lasers at the Munich Light Expo in Germany, which can meet the diverse welding needs of the entire industry, such as high-precision welding of electric vehicle batteries. Tom Rentschler, Product Manager of TRUMPF Fiber Laser, said, "The new generation TruFiber laser is the core engine of our production solutions. Through deep collaboration wit...

    06-20
    Çeviriyi gör