Türkçe

Using Topological Photon Chips to Uncover the Secrets of Open Systems

195
2024-02-02 18:08:02
Çeviriyi gör

Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.

Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the surrounding environment.

However, if the energy gain and loss are distributed in an orderly manner, so that they cancel each other out in all possible situations, the dynamics of the system can also be stable. This can be ensured through a phenomenon called parity check time symmetry.

All components of the system are carefully arranged to exchange the gain and loss of light through simultaneous mirroring and time reversal, making the system appear unchanged, just like a video played backwards and simultaneously reflected in a mirror, but looking exactly the same as the original video, which means it is PT symmetric.

PT symmetry is not just an academic concept; On the contrary, it opens the door to a more thorough understanding of open systems.

Professor Alexander Szameit from Rostock University specializes in studying interesting physical phenomena related to PT symmetry. Laser can replicate the behavior of artificial and natural materials arranged in periodic lattice structures in their customized photonic chips, making them an excellent platform for testing various physical theories.

Therefore, Professor Szameit and his colleagues successfully integrated the ideas of topology and PT symmetry. Topology is the study of properties that remain unchanged even when the underlying system is constantly deformed. When a system possesses these qualities, it becomes particularly resistant to external influences.

Szameit's team used laser engraved photonic waveguides in their experiments, which are optical structures etched into materials by laser beams.

In these "optical circuits," so-called topological insulators are implemented.
So far, people believe that open systems and this powerful boundary state are fundamentally incompatible. Researchers from Rostock, Vilzburg, and Indianapolis have jointly demonstrated that it is possible to address the apparent paradox by dynamically allocating benefits and losses over time.

These findings may pave the way for the development of new cutting-edge circuits for transmitting sound, light, and even electricity. These findings also represent significant advances in the understanding of topological insulators and open systems.

This study was funded by the German Research Foundation and supported by the Alfred Krupp von Boren and the Halbach Foundation.

Source: Laser Net


İlgili öneriler
  • Analysis of Development Prospects and Technological Trends in the Optical Industry

    As a core supporting field of modern technology, the optical industry has broad and diversified development prospects, benefiting from the cross drive of multiple emerging technologies. The following is a systematic analysis from the perspectives of technology trends, application areas, challenges, and opportunities: Core driving forces and growth areas1. Optical communication and 5G/6GDemand ex...

    bir gün önce
    Çeviriyi gör
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Çeviriyi gör
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    Çeviriyi gör
  • Medical implant manufacturers have announced the launch of ultra-short pulse lasers for cutting applications

    Norman Noble, the world's leading contract manufacturer of next-generation medical implants, today announced the launch of the Noble STEALTH HP, an ultrashort pulse laser for the fabrication of innovative medical devices and implants.It is reported that the laser is mainly equipped with a high-power laser cutting system, which can achieve high-quality cutting results without heat affected zone (HA...

    2023-09-12
    Çeviriyi gör
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    Çeviriyi gör