Türkçe

The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

944
2025-08-04 13:54:23
Çeviriyi gör

Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.
The laboratory of Kent Choquette, a professor of electrical and computer engineering in Grainger College of Engineering at the University of Illinois Urbana-Champaign, has developed a new design in which light from multiple VCSELs is combined to form a single coherent pattern called a “supermode”.

As the researchers report in IEEE Photonics Journal, the result is a controllable pattern brighter than what is possible with an array of independent devices.

 



940 nm dual-cavity photonic crystal VCSEL array


‘Challenging VCSELs’

“VCSELs are more challenging to work with than other kinds of lasers because they naturally tend to emit light in many special patterns, or modes, so the central problem has been figuring out how to get the light to stay in the mode you want,” Choquette said.

“The design we explore in this study is noteworthy because it shows how to extend mode control across more than one VCSEL and use an array of them in tandem to get a single desired mode. With this level of cooperation across arrays of VCSELs, we’re confident that new uses for these devices will emerge.”

Ordinarily, VCSELs are individually controlled with electrical signals, making the problem of coordinating a coherent beam across laser cavities difficult. The researchers proposed a design that makes use of a photonic crystal connecting adjacent VCSELs. So, although they are electrically independent, they act in tandem optically. This makes it possible to control both cavities in a way that produces one of two pre-determined collective patterns, or supermodes.

The details of the design, including the use of a special “anti-guided” crystal to achieve the optical coupling, were studied by Dan Pflug, an Illinois Grainger Engineering graduate student in Choquette’s laboratory and the study’s lead author.

The Illinois team then turned the design over to the company Dallas Quantum Devices, where a working device was fabricated in a foundry-level process, demonstrating that the design can be practically realized.

“Our collaboration with Dallas Quantum Devices originates in a call from the National Science Foundation for Small Business Innovation Research proposals in high-speed VCSELs,” Choquette said. “I have known some of these people for over 20 years. It’s a case where what started out as informal exchanges has led to a long-term relationship.”

For Choquette, this work is a product of discovery and innovation for its own sake. He observed that this is often where some of the most important end uses for new technologies originate. “When I started working with VCSELs 30 years ago, the interest in them was purely academic,” he said. “But one day, I got a call from Microsoft, and laser computer mice entered the market. Now, everyone uses VCSELs every day. This is the reason we do research like this: applications aren’t always obvious, and the only way to know is to try it out.”

Source: optics.org

İlgili öneriler
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    Çeviriyi gör
  • Four ways researchers harness the power of lasers to achieve manufacturing excellence

    The use of industrial lasers has become a viable option for many manufacturing processes. It enables workers to simplify steps, improve precision and benefit from the benefits associated with output. Decision makers will get the best results when they consider the specific possibilities of using lasers in manufacturing. Here are some options.Improved cleaning and texturing methodsMany man...

    2023-08-04
    Çeviriyi gör
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Çeviriyi gör
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Çeviriyi gör
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    Çeviriyi gör