Türkçe

The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

6
2025-08-04 13:54:23
Çeviriyi gör

Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.
The laboratory of Kent Choquette, a professor of electrical and computer engineering in Grainger College of Engineering at the University of Illinois Urbana-Champaign, has developed a new design in which light from multiple VCSELs is combined to form a single coherent pattern called a “supermode”.

As the researchers report in IEEE Photonics Journal, the result is a controllable pattern brighter than what is possible with an array of independent devices.

 



940 nm dual-cavity photonic crystal VCSEL array


‘Challenging VCSELs’

“VCSELs are more challenging to work with than other kinds of lasers because they naturally tend to emit light in many special patterns, or modes, so the central problem has been figuring out how to get the light to stay in the mode you want,” Choquette said.

“The design we explore in this study is noteworthy because it shows how to extend mode control across more than one VCSEL and use an array of them in tandem to get a single desired mode. With this level of cooperation across arrays of VCSELs, we’re confident that new uses for these devices will emerge.”

Ordinarily, VCSELs are individually controlled with electrical signals, making the problem of coordinating a coherent beam across laser cavities difficult. The researchers proposed a design that makes use of a photonic crystal connecting adjacent VCSELs. So, although they are electrically independent, they act in tandem optically. This makes it possible to control both cavities in a way that produces one of two pre-determined collective patterns, or supermodes.

The details of the design, including the use of a special “anti-guided” crystal to achieve the optical coupling, were studied by Dan Pflug, an Illinois Grainger Engineering graduate student in Choquette’s laboratory and the study’s lead author.

The Illinois team then turned the design over to the company Dallas Quantum Devices, where a working device was fabricated in a foundry-level process, demonstrating that the design can be practically realized.

“Our collaboration with Dallas Quantum Devices originates in a call from the National Science Foundation for Small Business Innovation Research proposals in high-speed VCSELs,” Choquette said. “I have known some of these people for over 20 years. It’s a case where what started out as informal exchanges has led to a long-term relationship.”

For Choquette, this work is a product of discovery and innovation for its own sake. He observed that this is often where some of the most important end uses for new technologies originate. “When I started working with VCSELs 30 years ago, the interest in them was purely academic,” he said. “But one day, I got a call from Microsoft, and laser computer mice entered the market. Now, everyone uses VCSELs every day. This is the reason we do research like this: applications aren’t always obvious, and the only way to know is to try it out.”

Source: optics.org

İlgili öneriler
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    Çeviriyi gör
  • Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

    Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass produc...

    2023-09-22
    Çeviriyi gör
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    Çeviriyi gör
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    Çeviriyi gör
  • LM GROUP USA expands its North American office

    Recently, BLM GROUP USA, a leading manufacturer of laser tube and sheet metal processing equipment, announced that its North American headquarters in Novi, Michigan has officially started construction, with plans to add 65000 square feet of modern facilities. It is expected to be completed and put into use in the third quarter of 2025.The specific investment amount for this expansion has not been ...

    2024-08-03
    Çeviriyi gör