Türkçe

New insights into the interaction between femtosecond laser and living tissue

897
2024-06-07 14:10:38
Çeviriyi gör

The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.

To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photoscience (MPL), as well as Max Planck Zentrum f ü r Physik und Medizin, collaborated to determine the conditions under which strong pulsed lasers can be used in the body without damaging the organism.

The international team based in Erlangen used vertebrate zebrafish to investigate the mechanism of deep tissue light damage triggered by femtosecond excitation pulses at the cellular level. The research results have been published in the Journal of Communication Physics.

The first author of this publication, Dr. Soyeon Jun from the MPL "Femtosecond Field Mirror" group led by Fattahi, explained, "We have demonstrated that when the central nervous system (CNS) of zebrafish is irradiated with 1030 nm femtosecond pulses, it suddenly occurs at the extreme peak intensity required for low-density plasma formation.".

As long as the peak intensity is below the low plasma density threshold, this allows for non-invasive increase in imaging residence time and photon flux during 1030 nm irradiation. This is crucial for nonlinear unlabeled microscopes.

"These findings have greatly promoted the advancement of deep tissue imaging technology and innovative microscopy techniques, such as femtosecond field microscopy, which is currently being developed in my group. This technology can capture high spatial resolution, unlabeled images with attosecond time resolution," Fattahi said.

"Our research findings not only highlight the value of collaboration in the fields of physics and biology, but also pave the way for in vivo applications to achieve precise manipulation of the central nervous system based on light," added Wehner, head of the Neuroregeneration Research Group.

Source: Laser Net

İlgili öneriler
  • Photonics leaders call for EU to implement € 2 billion plan

    Photonics21 has released a new position paper urging the European Commission to create a € 2 billion ($2.35 billion) independent plan for photonics in the 2028-2034 budget, and warning that Europe must 'invest in light, otherwise it will fall into darkness'.Channelled through the European Union’s Multiannual Financial Framework (MFF), the funding is designed to unlock a further €6–8 billion from i...

    10-14
    Çeviriyi gör
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    Çeviriyi gör
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    Çeviriyi gör
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    Çeviriyi gör
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    Çeviriyi gör