Türkçe

NASA will demonstrate laser communications on the space station to improve space communications capabilities

930
2023-09-04 17:12:37
Çeviriyi gör

Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023. 

ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

(Photo credit: NASA)

Advantages of laser communication systems

Laser communication systems use invisible infrared light to send and receive information at higher data transfer rates. It took about nine weeks for the original radio frequency system to transmit a complete map of Mars back to Earth, while it took about nine days using lasers. As a result, with higher data transfer rates, missions can send more images and videos to Earth in a single transmission. 

Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data transfer rates for low-Earth orbit missions. Laser communications provide greater flexibility for missions, as well as a quick way to get data from space. NASA is currently integrating this technology in near-Earth, lunar and deep space demonstrations.

In addition to the advantages of faster data transmission rates, laser systems also have key advantages in spacecraft design due to their lighter weight and lower energy consumption. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration via LCRD. 

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit (22,000 miles above Earth), further refining NASA's laser capabilities by transmitting data between two ground stations and conducting experiments. Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1,200 megabits per second. The data will then be sent from LCRD to ground stations in Hawaii and California. This demonstration will show how laser communication can benefit low-Earth orbit missions.

ILLUMA-T is being launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. During the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japanese Experimental Module Exposure Facility (JEM-EF). 

Once the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once that's done, the team will launch an onslaught of the payload's first light - a major milestone for the mission that will transmit the first laser beam to the LCRD through its optical telescope. Once the first light appears, data transmission and laser communication experiments will begin and continue throughout the planned mission.

Test lasers in different scenarios

In the future, operational laser communications will complement the radio frequency systems that many space missions still rely on to transmit data back to Earth. While ILLUMA-T is not the first mission to test laser communications in space, it brings NASA one step closer to actually applying the technology.

In addition to LCRD, ILLUMA-T's predecessors include: the 2022 TeraByte InfraRed Delivery system, which is currently testing laser communication on small Cubesats in low Earth orbit; Lunar laser communication demonstration to transmit data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; And 2017 Lasercomm Science's optical payload, which demonstrates how laser communication can speed up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data transfer rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: OFweek

İlgili öneriler
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Çeviriyi gör
  • September 2024 China International Industry Fair Machine Tool Exhibition

    The CNC Machine Tool and Metal Processing Exhibition under the China International Industry Fair gathers global intelligent machine tool equipment and focuses on cutting-edge metal processing technology. The exhibition categories cover metal cutting, metal forming, laser processing, sheet metal stamping, machine tool supporting functional components and peripheral products, with a display area of ...

    2024-09-04
    Çeviriyi gör
  • Laser technology reveals hidden gases in complex mixtures

    Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the co...

    2024-01-11
    Çeviriyi gör
  • Ruifeng constant green laser: With dense and concentrated characteristics, it can accurately cut on PCBs and FPCs

    In the vigorous development of contemporary technology, green laser has become a shining star in the field of electronics. Not only because of its excellent performance, but also because it brings infinite imagination and creative inspiration to creators. The use of green laser for PCB (Printed Circuit Board) and FPC (Flexible Printed Circuit Board) shape cutting has opened up a new artistic journ...

    2023-09-19
    Çeviriyi gör
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    Çeviriyi gör