Türkçe

ELI and LLNL strengthen transatlantic large-scale laser cooperation

379
2025-07-09 10:33:21
Çeviriyi gör

Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.

“We are looking forward to expanding our existing collaborations with ELI on areas such as ultrabright high-repetition-rate sources for enhanced radiography, fusion and plasma physics research,” said James McCarrick, LLNL program director for High Energy Density and Photon Systems.

“This includes developing technologies with multiple applications such as high-repetition-rate target systems and diagnostics that can survive sustained operation close to one of the highest intensity and highest average power lasers in the world.”

ELI and LLNL have a long-standing partnership that began with LLNL building and delivering the L3 HAPLS (High-Repetition-Rate Advanced Petawatt Laser System) to the ELI Beamlines Facility near Prague in the Czech Republic. L3 HAPLS is designed to deliver petawatt-class pulses with energy of at least 30 joules and durations below 30 femtoseconds, at a 10 Hz repetition rate.

The system is already extensively used, capitalizing on its reliability and high repetition rate, while a clear plan is in place to continue ramping up its performance toward the full technical design parameters. These capabilities are essential for driving secondary sources like electrons, ions and x-rays, and for advancing the understanding of laser-plasma interactions.

The L3 HAPLS is a central feature of ELI's scientific offerings and provides a powerful tool for exploring high-intensity laser experiments with relevant applications to fields like materials science, medical therapy and non-destructive analysis. It is also particularly well suited for exploratory research in laser-driven fusion.

ELI as ‘proving ground’
ELI also has already acted as a proving ground for LLNL machine learning and optimization technologies. Last year, LLNL researchers performed an experiment in cooperation with ELI staff that integrated machine learning and optimization technologies to enhance the performance of the L3 system. This effectively boosted precision and efficiency, paving the way for even greater advancements in high-power laser experiments and research. The success of this experiment opens new avenues in laser-plasma interaction physics.

The close cooperation with the U.S. scientific user community is evident in the growing demand for ELI’s facilities within the framework of ELI’s user program. With experiment proposal submissions increasing and a rising user base, the U.S. stands out as the country with the third-highest number of proposals in the past five mission-based access calls. This underscores the significance of transatlantic cooperation in advancing laser science and highlights the strong and ongoing engagement of U.S.-affiliated researchers in ELI’s user program.

“We are pleased to see the active engagement of U.S.-based researchers in experiments at ELI, leveraging the advanced technology, including the L3 HAPLS system,” said Allen Weeks, ELI ERIC Director General. “This collaboration exemplifies the strength of international partnerships in driving forward scientific research and technological advancements. Together ELI and LLNL are shaping the future of laser science.”

The new agreement lays the foundation for the exchange of staff, internship opportunities for students and postdocs and fostering a culture of knowledge-sharing and intellectual collaboration. These initiatives will not only strengthen the ties between the two institutions but also expand the scope of joint research initiatives. Through this continued collaboration, ELI and LLNL are committed to addressing the challenges of tomorrow and shaping the future of laser science and technology.

Source: optics.org

İlgili öneriler
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    Çeviriyi gör
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    Çeviriyi gör
  • Edmund Optics acquisition son-x

    Recently, globally renowned optical component manufacturer Edmund Optics announced that the company has acquired ultrasonic assisted systems and high-precision optical manufacturer son-x.Edmund Optics, as a leader in optical technology solutions, has been serving various fields such as life sciences, biomedicine, industrial testing, semiconductors, and laser processing since its establishment in 1...

    01-22
    Çeviriyi gör
  • Xiaomi has recently invented a laser engraving machine that allows you to create screen printing and design using different materials

    3D printers have become popular worldwide, allowing you to create useful and beautiful products. This has sparked a trend towards DIY, which is "doing it yourself," even driving popular pages such as Etsy in Spain. In fact, an economy has been established around these types of handmade products. But there are more devices that can help with these types of creativity.The latest one is Xiaomi's inve...

    2023-12-26
    Çeviriyi gör
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    Çeviriyi gör