Türkçe

Laser printing on fallen leaves can produce sensors for medical and laboratory use

448
2024-05-16 17:18:22
Çeviriyi gör

The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The team is led by Bruno Janegitz, Professor and Head of Sensors, Nanopharmaceuticals and Nanostructured Materials Laboratory (LSNANO) at the Federal University of San Carlos (UFSCar), and Thiago Paix ã o, Professor and Head of Electronic Tongue and Chemical Sensor Laboratory (L2ESQ) at the University of S ã o Paulo (USP). This initiative has received support from FAPESP and was emphasized in an article published in the journal ACS Sustainable Chemistry and Engineering.

Janegitz said, "We used CO2 (carbon dioxide) lasers to print designs of interest on leaves through pyrolysis and carbonization. Therefore, we obtained an electrochemical sensor for measuring levels of dopamine and paracetamol. It is very easy to operate. A drop of solution containing one of the compounds is placed on the sensor, and a potentiostat connected to it displays the concentration."

Simply put, the laser beam burns the leaves during the pyrolysis process, converting their cellulose into graphite, which is printed on the leaves in a shape suitable for use as a sensor. During the manufacturing process, the parameters of the CO2 laser, including laser power, pyrolysis scanning rate, and scanning gap, are systematically adjusted to obtain the best results.

Janegitz said, "These sensors have been characterized through morphology and physicochemical methods, allowing for a detailed exploration of the new carbonized surfaces generated on the leaves."

"In addition, the applicability of the sensor was confirmed through testing dopamine and paracetamol in biological and drug samples. For dopamine, the system is effective in the linear range of 10-1200 micromoles per liter, with a detection limit of 1.1 micromoles per liter. For paracetamol, the system has a linear range of 5-100 micromoles per liter, with a detection limit of 0.76."

In tests involving dopamine and paracetamol, as a proof of concept, the electrochemical sensor extracted from fallen leaves achieved satisfactory analytical performance and noteworthy reproducibility, highlighting its potential as a substitute for traditional substrates.

Replacing traditional materials with fallen leaves has produced significant benefits in reducing costs and, most importantly, environmental sustainability. Janegitz said, "These leaves would have been incinerated or at best composted. Instead, they are being used as substrates for high-value devices, which is a significant advancement in the manufacturing of next-generation electrochemical sensors."

Source: Laser Net

İlgili öneriler
  • Showcasing the world's fastest photonics alignment system for SiPh chips on Photonics West

    With its proprietary fast multi-channel photon alignment algorithm and professional high-precision machinery, PI helps customers improve production efficiency to participate in the rapidly growing silicon photonics market. Over the past decade, PI has been continuously expanding its range of automatic photon alignment engines and will launch new systems at both ends of the spectrum in this year's ...

    2024-01-19
    Çeviriyi gör
  • The carbon dioxide laser market is expected to reach 7.1 billion US dollars by 2033

    The carbon dioxide laser market will show significant elasticity and sustained growth in the next decade, with a compound annual growth rate of 3.6% expected from 2023 to 2033.This impressive prediction indicates the persistent demand and expanding application of carbon dioxide lasers in various industries.By the end of 2033, the market is expected to reach a significant valuation of $7.1 billion,...

    2023-10-27
    Çeviriyi gör
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    Çeviriyi gör
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    Çeviriyi gör
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    Çeviriyi gör