Русский

New LiDAR can 'see' faces from hundreds of meters away

875
2025-02-11 15:58:55
Посмотреть перевод

At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and create a 3D model of the face. This LiDAR can even capture ridges and indentations as small as 1 millimeter.

 



The relevant paper was published in the latest issue of the journal Optics. The team has designed a single photon time-of-flight lidar system. The system emits laser pulses, which reflect back to the device after colliding with objects. Lidar can determine the shape of an object by measuring the time required for each pulse to travel back and forth. The system is capable of obtaining high-resolution 3D images of objects or scenes up to a distance of 1 kilometer. Even in harsh environments or when objects are obscured by leaves or camouflage nets, it can achieve precise imaging, greatly improving security monitoring and remote sensing capabilities.

In order to achieve improved resolution, the team carefully calibrated and adjusted different components, such as the tiny parts inside the device used to guide laser pulses. In order to enable the device to distinguish individual photons, the team used a light detection sensor based on extremely fine superconducting wires, which is not commonly used in LiDAR. In addition, it is necessary to filter out sunlight that may enter the detector and reduce image quality. Tests have shown that the system captured a 3D image of a team member's face under 45 meter and 325 meter daylight conditions, distinguishing features as small as 1 millimeter and increasing depth resolution by approximately 10 times compared to their previous records. On a smaller scale, they captured images of Lego figurines from 32 meters away.

In another test, they filmed a communication tower 1 kilometer away. The excellent depth resolution of this system means that it is particularly suitable for imaging objects in cluttered backgrounds, which is a challenge for digital cameras. The team said that creating a detailed 3D map of the surrounding environment is also crucial for autonomous vehicle and even some robots.

Source: laserfair

Связанные рекомендации
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    Посмотреть перевод
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    Посмотреть перевод
  • NLIGHT announces the launch of two new laser technologies at The Battery Show North America

    Recently, nLIGHT, a leading company in the fields of fiber optics and semiconductor lasers, announced the launch of two new laser technologies at The Battery Show North America: WELDForm and Automatic Parameter Adjustment (APT), aimed at meeting the dynamic needs of advanced battery manufacturing customers. In order to provide high-quality laser welding technology to the rapidly growing electric...

    2024-10-15
    Посмотреть перевод
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Посмотреть перевод
  • IPG Japan office and technical center officially opened

    Recently, IPG Photonics, a leading company in the global fiber laser field, announced the official opening of its new office and central technology center in Japan, marking a solid step in the technology giant's strategic deployment in the Asia Pacific region.The opening of this new office not only demonstrates IPG Photonics' high regard for Japan and the entire Asia Pacific market, but also indic...

    2024-07-15
    Посмотреть перевод