Русский

Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

496
2024-01-30 13:53:33
Посмотреть перевод

Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.

The widespread adoption of PLAL in scientific and industrial research has demonstrated its practicality. However, the size and maintenance cost of traditional laser sources pose significant challenges for laboratories, especially those that are not specialized in laser science.

Recognizing these obstacles, Professor Yinghong Sakurai and Professor Yumi Yayama from Osaka University, along with their team, turned their attention to microchip laser systems. MCL, developed by the Taira team at the Institute of Molecular Science, is a compact, low-power giant pulse laser system with a cavity length of less than 10 mm, making it ideal for standard organic synthesis laboratories.

Although MCL has size advantages, the applicability of its specifications to gold target PLAL is still unclear. The research team aims to understand how differences in instrument specifications affect the results of gold PLAL, with the aim of further promoting desktop synthesis and direct application of NPs for catalytic purposes.

In a study published in the Journal of Industrial Chemistry and Materials, the team used MCL to study the PLAL of gold, focusing on the effects of small laser pulse energy, short pulse duration, and low repetition frequency on ablation efficiency. The results indicate that although the pulse energy of MCL is much smaller compared to traditional high-power lasers, it exhibits relatively higher ablation efficiency.

"Our research provides new insights into the preparation of Au NPs using compact MCL systems. Importantly, it opens up avenues for developing new catalytic reactions in standard synthetic chemistry laboratories for highly reactive NPs directly prepared using MCL," said Sakurai.

The research team includes Barana Sandakelum Hettiaracchi, Yusuke Takaoka, Yuta Uetake, Yumi Yakiyama and Mihoko Maruyama, Yusuke Mori, Hiroshi Y. Yoshikawa and Hidehiro Sakurai from Osaka University; And Hwan Hong Lim and Takunori Taira from the Institute of Molecular Science.

Source: Laser Net

Связанные рекомендации
  • LASER World of PHOTONICS CHINA- 20th Anniversary Celebration Coming Soon!

    The Annual Grand Event for the Laser, Optics, and Optoelectronics Industry in AsiaLASER World of PHOTONICS CHINA20th Anniversary Celebration Coming Soon!📅 March 11-13📍 Shanghai New International Expo Centre (SNIEC), Entrance Hall 3🏢 Halls: N1-N5, E7-E4💡 1,400+ exhibitors across over 100,000 square meters Visitor Opening HoursDay 1: March 11 (Tuesday) 9:00 - 17:00Day 2: March 12 (Wednesday)...

    03-10
    Посмотреть перевод
  • High sensitivity visualization of ultrafast carrier diffusion using a wide field holographic microscope

    A sketch of the imaging and holographic parts of a transient holographic microscope, including a pulse sequence, to illustrate the signal modulation method. By imaging the pinhole array at the sample position, a diffraction limited excitation spot array can be created, allowing for the simultaneous collection of transient data around 100 excitation spots.Femtosecond transient microscopy is an impo...

    2023-12-25
    Посмотреть перевод
  • Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

    Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-...

    2024-05-22
    Посмотреть перевод
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Посмотреть перевод
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    Посмотреть перевод