Русский

Aerotech announces new control features for laser scanning heads

643
2024-06-04 15:30:09
Посмотреть перевод

Aerotech has upgraded the performance of AGV laser scanning heads through powerful controller functions to enhance scanner control (ESC). The new ESC function of the Automation 1-GL4 2-axis laser scanning head driver is a completely passive control loop enhancement function that ensures higher accuracy in the most dynamic motion.

With the increasing demand for higher output laser technology in various industries, quality standards are also constantly tightening. Therefore, traditional laser scanning systems quickly reached their limits.

Aerotech's 2-axis, 3-axis, and 5-axis laser scanning heads all benefit from this feature, achieving higher acceleration and smaller tracking errors, allowing users to see a significant improvement in laser processing throughput.

"The ESC function improves the performance of all AGV laser scanning head products, eliminating the need for users to change trajectories or motion commands," said Bryan Germann, Optical Manipulation Product Manager at Aerotech. Our customers need to push their scanning head products to faster and more dynamic limits without compromising accuracy. This upgrade can improve productivity as the number of units per hour can increase without compromising quality.

Widespread laser applications have benefited from ESC, including:
Impact laser drilling for electronic and semiconductor applications: ESC provides higher drilling efficiency through strict hole material quality requirements.
Laser cutting and microfabrication of display glass for automotive and mobile applications: Improving cutting speed without sacrificing edge quality means higher yield and stable quality yield.

Laser welding of medical devices: Higher frequency swing motion during welding contour can improve welding quality and minimize post-processing.

Source: Laser Net

Связанные рекомендации
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    Посмотреть перевод
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Посмотреть перевод
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    Посмотреть перевод
  • Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

    Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.The new non cooled pump laser modu...

    2024-03-23
    Посмотреть перевод
  • Research on LiDAR at the University of Electronic Science and Technology of China, published in Nature

    The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advanta...

    2024-06-22
    Посмотреть перевод