Русский

Preparation of all silicon dielectric metasurface by femtosecond laser modification combined with wet etching, achieving ideal compatibility with complementary metal oxide semiconductor technology

827
2023-10-23 14:53:50
Посмотреть перевод

The fully dielectric element surface has the characteristics of low material loss and strong field localization, making it very suitable for manipulating electromagnetic waves at the nanoscale. Especially the surface of all silicon dielectric elements can achieve ideal compatibility with complementary metal oxide semiconductor technology, making it an ideal choice for large-scale monolithic integration of photonic chips. However, in traditional silicon micro processing, the combination of mask lithography and active ion etching involves multiple preprocessing stages, resulting in increased costs and processing time.

This article proposes a femtosecond laser direct writing method, which uses femtosecond laser to process silicon below the ablation threshold and wet chemical etching to achieve the surface of all silicon dielectric resonant elements. This method utilizes different etching rates between laser modified and untreated regions to achieve the manufacturing of large-scale patterned silicon surfaces in a simple and economical manufacturing method.

The Ioanna Sakellari team from Greece utilized ultrafast laser modification and wet chemical etching to form a two-dimensional micro nano circular array structure on silicon surface. By adjusting the size of micro nano stage units on the silicon surface and changing the surface diameter of the stage, the resonance frequency of the metasurface can be effectively controlled. The Fourier transform infrared spectra of linearly polarized incident light with different silicon based nano cone array structures were experimentally measured, and the scale of 200 was characterized μ M × two hundred μ The infrared light transmittance of different nano cone array structures of m, with a cone height of approximately 0.95 μ m. The period of the array in both the x and y directions is 2.42 μ m. The surface diameters on the circular platform are 220nm (green), 380nm (blue), and 740nm (red), respectively. The electron microscope images of different nano cone array structures prepared are shown in the following figure:

Figure 1. Structure of a two-dimensional micro nano cone array on silicon surface

Source: Sohu

Связанные рекомендации
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    Посмотреть перевод
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    Посмотреть перевод
  • BYD and Huagong Technology deepen strategic cooperation and exchange

    Recently, BYD Semiconductor Division held discussions and exchanges with Huagong Technology High Tech Company and Laser Company, opening a new chapter of strategic cooperation.Chen Gang, General Manager of BYD Semiconductor Division, Nie Bo, Party Committee Member and General Manager of Huagong High Tech, Wang Jiangang, Party Committee Member, Deputy General Manager of Huagong Laser, and General M...

    2024-12-11
    Посмотреть перевод
  • Munich Laser World of Photonics 2025 Grand Opening

    On June 24-27, 2025, the global optoelectronic event Laser World of Photonics 2025 was grandly opened in Munich, Germany. This exhibition brings together over 1350 companies from 43 countries, making it the largest in history. Among them, international laser giants Coherent, IPG, TRUMPF, and MKS showcased their latest breakthroughs and future directions in laser technology with multiple heavyweigh...

    06-25
    Посмотреть перевод
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    Посмотреть перевод