Русский

Particles have "fuzzy memory" in solid-state batteries

406
2024-02-18 14:59:02
Посмотреть перевод

When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.


The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.
This discovery has improved the understanding of solid-state batteries, which are candidates for the next generation of safer and more powerful batteries.
A paper describing this study was published in the journal Nature.


The team is studying the behavior of ions in solid-state battery electrolytes when a laser emits a sudden voltage through it.
Previously, researchers observed that ions in these electrolytes "jump" from one place to another in a chaotic manner, ultimately causing charges to flow.

But the team found that within one billionth of a second, the ions briefly changed direction and returned to their previous position - then continued their chaotic way.
The main author Andrei Poletayev is a postdoctoral researcher at the University of Oxford, who refers to it as "fuzzy memory.".

"Researchers have been using macroscopic tools to study ion transport for a long time, and they cannot observe what we see in this study," Poletayev said.
Researchers use high-frequency lasers with pulses of only a few trillions of seconds to observe the movement of ions - the light reflected from the electrolyte can tell them what the ions are doing.

"Many strange and unusual things happen during ion hopping," said senior author Aaron Lindenberg, a professor at Stanford University and the SLAC National Accelerator Laboratory in the United States, where experiments were conducted.
When we apply the force of vibrating the electrolyte, ions do not react immediately like most materials.
Ions may sit there for a while, suddenly jump up, and then sit there for a long time. You may need to wait for a while before suddenly experiencing a huge displacement.
Therefore, there are randomness factors in this process, which makes these experiments difficult.

Source: Laser Net

Связанные рекомендации
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    Посмотреть перевод
  • Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

    Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatmen...

    04-10
    Посмотреть перевод
  • Luxiner launches LXR platform to set new standards for industrial laser microfabrication

    Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.In today's rapidly changing industrial environment, laser technology plays a crucial ...

    2024-03-25
    Посмотреть перевод
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    Посмотреть перевод
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Посмотреть перевод