Русский

A new type of flexible reflective mirror can improve the performance of X-ray microscopy

382
2024-05-06 16:31:46
Посмотреть перевод

A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.
This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the performance of X-ray microscopy and other technologies that use X-ray mirrors. The relevant results were published in the journal Optica.

A new type of deformable mirror for X-ray microscopy, achieving high image resolution through wavefront correction.


X-ray microscope is an advanced imaging tool that serves as a bridge between electron microscopy and optical microscopy. It uses X-rays that provide better resolution than light and can penetrate thick samples that electrons cannot penetrate. This enables imaging of structures that are difficult to see with other microscopy techniques.

X-ray microscopes have high resolution, making them particularly important in fields such as materials science and biology, as they can observe the composition, chemical state, and structure inside samples.

Reflectors play a crucial role in X-ray microscopy. They can reflect X-ray beams and perform high-resolution imaging on complex structures. High quality images and accurate measurements are essential, especially in cutting-edge scientific fields such as catalyst and battery detection.
However, due to the small wavelength of X-rays, they are easily distorted due to small manufacturing defects and environmental influences. This will generate wavefront aberrations, thereby limiting the resolution of the image. Matsuyama and his collaborators solved this problem by creating a deformable mirror and adjusting its shape based on the detected X-ray wavefront.

The X-ray microscopy images showed higher resolution after using the new deformable mirror. The left and right images are the images before and after shape correction, respectively.

In order to optimize their mirrors, researchers studied piezoelectric materials. These materials are very useful because they can deform or change shape when an electric field is applied. In this way, even if there is a slight deviation in the detected radio waves, the material can reshape its own shape and respond accordingly.

After considering various compounds, researchers chose lithium niobate single crystal as a shape changing mirror. Single crystal lithium niobate is very useful in X-ray technology because it can expand and contract under the action of an electric field, and form a high reflective surface through polishing. This allows it to serve as both an actuator and a reflective surface, simplifying the equipment.

Matsuyama said, "Traditional X-ray deformable mirrors are made by bonding glass substrates and PZT plates. However, connecting different materials together is not ideal and can lead to instability. To overcome this problem, we used single crystal piezoelectric materials, which are made of uniform materials and do not require bonding, thus having extremely high stability. Due to their simple structure, the mirror can freely deform, achieving atomic level accuracy. In addition, this accuracy can be maintained for 7 hours, confirming its extremely high stability.".

When testing their new equipment, Songshan's team found that their X-ray microscope exceeded expectations. Its high resolution makes it particularly suitable for observing microscopic objects, such as semiconductor device components.

Compared to the spatial resolution of traditional X-ray microscopes (usually 100 nanometers), their technology has the potential to develop microscopes with a resolution about 10 times higher (10 nanometers) because aberration correction makes them closer to the ideal resolution.
Matsuyama said, "This achievement will drive the development of high-resolution X-ray microscopes, which have always been limited by manufacturing process accuracy. These mirrors can also be applied to other X-ray equipment, such as lithography equipment, telescopes, CT in medical diagnosis, and X-ray nanobeam formation."

Related links: https://phys.org/news/2024-05-mirror-flexibly-ray-microscopes.html

Source: Physicist Organization Network

Связанные рекомендации
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    Посмотреть перевод
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Посмотреть перевод
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    Посмотреть перевод
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    Посмотреть перевод
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Посмотреть перевод