Русский

The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

482
2023-09-25 15:10:20
Посмотреть перевод

It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.

The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy Microstructures Enabled by Nanoscale Additive Manufacturing'.

Keywords: additive manufacturing; Two photon lithography; Nickel; Nanomechanics; molecular dynamics
At the end of last year, researchers at the California Institute of Technology revealed that they had developed a new manufacturing technology that could print tiny metal parts as thick as three to four sheets of paper.

Now, the team has reinvented this technology, which can print objects a thousand times smaller than before: 150 nanometers, the size of a flu virus. During this process, the research team also found that the atomic arrangement inside these objects is disordered. However, in the case of nanoscale metal objects, this disordered atomic arrangement is 3 to 5 times stronger than similar sized structures with ordered atomic arrangements.

This new technology is similar to another technology announced by the team last year, but each step is redesigned to work at the nanoscale. However, this poses another challenge: creating invisible or difficult to manipulate objects.

The first step in this process is to prepare a photosensitive "cocktail" mixture, mainly composed of hydrogel, which is a polymer that can absorb water many times its own weight. Then, the mixture is selectively hardened with a laser to establish a 3D scaffold with the same shape as the desired metal object. In this study, these objects were a series of tiny pillars and nanolattices.

The hydrogel is then partially injected into an aqueous solution containing nickel ions. Once the mixture is saturated with metal ions, they will be baked until all the hydrogels are burned out. Although the remaining part has shrunk, it still has the same shape as the original one, and is completely composed of oxidized metal ions (combined with oxygen atoms). In the final step, oxygen atoms are chemically peeled off from the part, converting the metal oxide back into metallic form.

Researchers claim that during this process, all these thermal and dynamic processes occur simultaneously, resulting in a very, very chaotic microstructure. Defects such as pores and irregularities in the atomic structure will be observed, which are usually considered as defects with deteriorating strength. If you want to make something from steel, such as an engine cylinder block, you wouldn't want to see this microstructure because it greatly weakens the strength of the material.

However, their findings are on the contrary, weakening the strength defects of metal components on a larger scale actually enhances nanoscale components.

Researchers believe that this is one of the first demonstrations of 3D printing of nanoscale metal structures. This process can be used to manufacture many useful components, such as catalysts for hydrogen; Electrodes for storing carbon free ammonia and other chemicals; And the basic components of devices such as sensors, micro robots, and heat exchangers.

Source: Sohu


Связанные рекомендации
  • New Method - Observing how materials emit polarized light

    Many materials emit light in ways that encode information in its polarization. According to researchers at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, polarization is key for future technologies, from quantum computers to secure communication and holographic displays.Among such phenomena is a form known as circularly polarized luminescence (CPL), a special type of light emission ...

    07-04
    Посмотреть перевод
  • Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

    The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.Moreover, the computational density...

    2023-09-27
    Посмотреть перевод
  • Jenoptik invests 100 million euros to open new factory

    On May 30th, Jenoptik announced on its official WeChat account that after approximately two and a half years of construction, its new factory in Dresden, Germany, with an investment of nearly 100 million euros, has officially opened. This is the largest single investment project in Jenoptik's recent history.Jenoptik President and CEO Dr. Stefan Traeger stated that this new factory will make Dresde...

    06-05
    Посмотреть перевод
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    Посмотреть перевод
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Посмотреть перевод