Русский

Laser cladding method improves the surface performance of parts

497
2023-12-28 13:57:11
Посмотреть перевод

Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.
When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.

The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the repair of damaged or worn surfaces.
One of the most precise welding procedures is used to establish this mechanical connection between the substrate and layer.

Laser cladding has improved the performance of industrial products by producing protective layers to prevent wear and corrosion.

Engineers can use universal base metal alloys to design parts, which helps protect natural resources.
Then, the components are locally laser melted with high alloy materials to provide appropriate performance characteristics.

Laser cladding is also a method used to restore and remanufacture high-value components into their original shape.

In addition to the shape of fixed parts, selecting additive manufacturing materials with better wear characteristics than the original components can also improve service life and performance.

Source: Laser Net

Связанные рекомендации
  • IPG Japan office and technical center officially opened

    Recently, IPG Photonics, a leading company in the global fiber laser field, announced the official opening of its new office and central technology center in Japan, marking a solid step in the technology giant's strategic deployment in the Asia Pacific region.The opening of this new office not only demonstrates IPG Photonics' high regard for Japan and the entire Asia Pacific market, but also indic...

    2024-07-15
    Посмотреть перевод
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    Посмотреть перевод
  • ELI and LLNL strengthen transatlantic large-scale laser cooperation

    Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.“We are looking forward to expanding our existing collaborations with ELI on areas su...

    07-09
    Посмотреть перевод
  • Luxiner launches LXR platform to set new standards for industrial laser microfabrication

    Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.In today's rapidly changing industrial environment, laser technology plays a crucial ...

    2024-03-25
    Посмотреть перевод
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    Посмотреть перевод