Русский

The largest ultra fast laser production base in the northwest has been completed and put into operation

821
2024-04-28 17:02:48
Посмотреть перевод

As a representative enterprise in the field of ultrafast lasers, Zhuolai Laser has always performed outstandingly in the market, not only possessing dual technologies of "ultrafast+ultra strong", but also covering a remarkable range of technical routes in China. In 2022, the company completed a financing of 200 million yuan.

Recently, Zhuolai Laser announced to the public that its Xi'an subsidiary has completed relocation and expansion of production. The new venue has a total area of nearly 6000 square meters and is equipped with an office area, laboratory, staff restaurant, gym, yoga room, and leisure area. Among them, the 1000 level optical laboratory is nearly 3000 square meters.

Xi'an Zhuolai, as the first subsidiary established by Zhuolai Laser, has developed a team of nearly 100 people after 8 years of development. In addition to research and development, engineering, and mass production manufacturing functions, it also has comprehensive functions such as operation, sales, after-sales, and management. This relocation to a new location is expected to increase the annual production capacity of 3000 lasers, making Xi'an Zhuolai the largest production base for Zhuolai lasers and also the largest ultrafast laser production base in northwest China.

It is understood that Zhuolai Laser was established in 2014. Over the past decade of development, the company has consistently adhered to a business strategy that emphasizes both domestic and overseas markets. In September 2023, in order to enhance its comprehensive competitiveness and international influence, the company took an important step in the internationalization process: establishing a Korean branch, the first battle of international business was successful, achieving a "good start". The branch is located in the southern Gyeonggi do region of Seoul and has departments such as process application laboratories, technical service centers, and offices. After 6 years of development, the types of foreign customers of Zhuolai Laser have gradually expanded from initial medical customers to industrial and scientific research customers, with applications covering medical, display, scientific research, and semiconductor fields.

In addition to the continuous increase in business scale, Zhuo Lei also insists on close cooperation with universities and practices the exploration of national policies related to the coordinated development of industry, academia, and research. In early April 2024, the Zhuolai Laser Joint Laboratory and Peking University held a unveiling ceremony, which was also the first school enterprise joint laboratory in the laser industry chain in Beijing. The joint laboratory will engage in in-depth and close cooperation in areas such as high-power laser driven proton knives and the localization of ultra short and ultra strong laser devices, jointly promoting the deep integration of industry, academia, and research, and achieving win-win development for both schools and enterprises.

The new site of Xi'an Zhuoli is located in Building 4, Zone 2, Curvature Engine Photon Manufacturing, No. 3000 Biyuan Third Road, Chang'an District, Xi'an City, Shaanxi Province. It is the core area of the Silk Road Science City. The relocation of the new site is a testament to the fast lane of Zhuolai Laser and also foreshadows the bright future of the ultrafast laser market.

Source: Zhuolai Laser

Связанные рекомендации
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    Посмотреть перевод
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Посмотреть перевод
  • Zeiss Medical Technology nominated for the 2025 German Future Award

    Germany’s Office of the Federal President has announced the nominations for the German Future Prize 2025 (“Deutscher Zukunftspreis”). This year’s nominees include Dr. Mark Bischoff, Dr. Gregor Stobrawa and Dirk Mühlhoff from Zeiss Medical Technology (ZMT), for their project for minimally-invasive lenticule extraction to correct refractive errors. Nominated: Dirk Mühlhoff, Mark Bischoff, and Gr...

    09-22
    Посмотреть перевод
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    Посмотреть перевод
  • Massachusetts University team achieves new breakthrough in photolithography chip

    Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, bu...

    2024-11-06
    Посмотреть перевод