Português

Research Progress: Extreme Ultraviolet Photolithography

907
2024-12-09 14:02:28
Ver tradução

Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy and lower defect rates than previous lithography methods.

Recently, Dimitrios Kazazis, Yasin Ekinci, and others from the Paul Scherrer Institute in Switzerland published an article in Nature Reviews Methods Primers, comprehensively exploring the technological evolution from deep ultraviolet to extreme ultraviolet (EUV) lithography, with a focus on innovative methods for source technology, resist materials, and optical systems developed to meet the strict requirements of mass production.

Starting from the basic principles of photolithography, the main components and functions of extreme ultraviolet EUV scanners are described. It also covers exposure tools that support research and early development stages. Key themes such as image formation, photoresist platforms, and pattern transfer were explained, with a focus on improving resolution and yield. In addition, ongoing challenges such as random effects and resist sensitivity have been addressed, providing insights into the future development direction of extreme ultraviolet lithography EUVL, including high numerical aperture systems and novel resist platforms.

The article aims to provide a detailed review of the current extreme ultraviolet lithography EUVL capabilities and predict the future development and evolution of extreme ultraviolet lithography EUVL in semiconductor manufacturing.

 



Figure 1: Basic steps of photolithography process.



Figure 2: Extreme ultraviolet scanner and its main components.



Figure 3: Process window of photoresist.



Figure 4: Contrast curve of chemically amplified resist exposed to extreme ultraviolet light.



Figure 5: Typical faults in photolithography patterning of dense line/spacing patterns and contact hole arrays.



Figure 6: In 2025-2026, with the high numerical aperture, NA systems will enter mass production of high-volume manufacturing (HVM). In the next decade, lithography density scaling will continue to increase.



Figure 7: Chip yield curves plotted as a function of source power divided by dose for high numerical aperture NA and low numerical aperture NA extreme ultraviolet scanners.

Source: Yangtze River Delta Laser Alliance

Recomendações relacionadas
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    Ver tradução
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    Ver tradução
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Ver tradução
  • Dr. Mark Sobey, President of Coherent Lasers, has officially retired

    On September 1 local time, Coherent, an American laser system solutions provider, announced that Dr. Mark Sobey, president of its laser division, has officially retired from the company.In July 2022, II-VI and Coherent completed the merger and were reorganized into three business units: Lasers, Materials and Networking. Since this point, Dr. Sobey has served as President of Coherent's Laser divisi...

    2023-09-05
    Ver tradução
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Ver tradução