Português

Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

164
2024-09-18 11:30:16
Ver tradução

As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the imaging modality, PAM can be categorized into optical resolution photoacoustic microscopy (OR-PAM) and acoustic resolution photoacoustic microscopy (AR-PAM.) OR-PAM utilizes optically strong focusing to achieve high lateral resolution (<5 μm) imaging. However, light scattering within biological tissues limits the penetration depth of OR-PAM (no more than 1-2 mm). In contrast, AR-PAM exhibited deeper imaging (~3-10 mm). However, this enhanced effect is accompanied by a decrease in lateral resolution (>50 μm) and an increase in background noise. How to realize AR-PAM imaging with high lateral resolution without sacrificing imaging depth has been a pressing problem for PAM.

Recently, a research team from the Laboratory of Imaging and Visual Representation, Nanchang University, proposed an acoustic-resolution photoacoustic microscopy enhancement strategy based on the mean-reverting diffusion model to realize the transition from acoustic resolution to optical resolution. The result is published as “Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement: toward The results were published in the Journal of Innovative Optical Health Sciences, a leading journal in the field of biomedical photonics, under the title of “optical resolution”.

Main research content

The research team proposes a mean-regression diffusion model-based enhancement strategy for acoustic-resolution photoacoustic microscopy to achieve enhancement from acoustic to optical resolution. In the training stage, a mean-reversion diffusion model is trained to learn a priori information about the data distribution by modeling the quality reduction process from high-resolution PAM images to low-resolution AR-PAM images with fixed Gaussian noise. In the reconstruction stage, the learned a priori information is used to iteratively sample the noise states to generate a high resolution image from the low quality AR-PAM image. 

 


Figure 1.Flowchart of AR-PAM enhancement algorithm based on mean-reversion diffusion modeling


As a validation, the research team evaluated the performance of the proposed method using in vivo mouse experimental data. In a scene with a lateral resolution of 55 μm and a signal-to-noise ratio (SNR) of 35 dB, the method was compared with the conventional RL deconvolution method, the CycleGAN method, and the FDUnet method, and the results are shown in Figure 2. The enhancement results of the proposed method show higher quality and superior lateral resolution. The Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) reached 31.96 dB, 0.91, respectively, which is 136% and 54% improvement over the RL deconvolution method. 

 



Fig. 2. Comparison of the reconstruction results of different methods.


In addition, in order to further validate the enhancement performance of the model on large-scale images, the research team also used complete live mouse cerebrovascular images for experiments. It can be seen that the enhanced image (as shown in Fig. 3(c)) has a clearer vascular topology, higher lateral resolution, and stronger image contrast. It is noteworthy that the continuity of the vessels at the sub-image joints is well maintained without obvious artifacts. Compared with the true-value image (as shown in Fig. 3(a)), the PSNR and SSIM of the AR-PAM image (as shown in Fig. 3(b)) were 19.39 dB and 0.53, respectively, and those of the model-enhanced image were improved to 24.72 dB and 0.73, respectively, which were 27% and 38% higher compared to the AR-PAM, respectively. The results show that the proposed method can still significantly improve the lateral resolution of large-size AR-PAM images. 

 



Fig.3. Resolution enhancement results for large size AR-PAM images.



Conclusion and Outlook

This study proposes a new AR-PAM enhancement strategy based on a mean-reversion diffusion model to achieve a balance between AR-PAM and OR-PAM imaging depth and lateral resolution. The method models the quality reduction process from OR-PAM to low quality AR-PAM images. Subsequently, a numerical method is used to iteratively perform an inverse-time SDE aimed at reconstructing high-quality images from a homogenized state. The method significantly improves the lateral resolution of AR-PAM without sacrificing the imaging depth, which has the potential to improve the quality of PAM imaging and extend its application range.

Source: opticsky

Recomendações relacionadas
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    Ver tradução
  • IPG Q1 revenue of $252 million, co-founder and new CEO of Jiaobang

    Recently, IPG Photonics, a high-performance fiber laser supplier in the United States, released its first quarter financial report as of March 31, 2024.The financial report shows that IPG Photonics revenue in the first quarter was 252 million US dollars, a year-on-year decrease of 27%; The net profit was 19 million US dollars, a year-on-year decrease of 75%. The change in foreign exchange rate res...

    2024-05-07
    Ver tradução
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    Ver tradução
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    Ver tradução
  • Another blockbuster acquisition! The two equipment makers announced a merger to focus on laser construction

    Recently, RDO equipment announced the completion of its acquisition of Rocky Mountain Transit&laser, expanding the construction technology solutions, services and expertise of John Deere construction and Wirtgen group in eight stores in Idaho, Wyoming and Utah, RDO acquired the stores in December 2023.Adam Gilbertson, senior vice president of field technology and innovation at RDO, said the ac...

    2024-05-31
    Ver tradução