Português

GZTECH Global Headquarters and Advanced Light Source R&D and Production Base Launch Construction

268
2025-06-13 10:29:27
Ver tradução

On June 10th, the construction of GZTECH's global headquarters and advanced light source research and development production base was launched.

 



Rendering of GZTECH Global Headquarters and Advanced Light Source R&D and Production Base

 

The project is located in Donghu Comprehensive Bonded Zone, with a total construction area of approximately 40000 square meters. It will integrate GZTECH's industrial resources in the two core areas of fiber lasers and solid-state lasers, enhance the company's technological innovation capabilities and scale production level.

GZTECH is a national high-tech enterprise engaged in the research and development, production, and sales of advanced industrial lasers. Since its establishment in Optics Valley in 2018, it has successively launched a series of industrial laser products, including fiber MOPA, QCW, fiber infrared picosecond and green light, and solid-state nanosecond ultraviolet. These products are mainly used in industries such as new energy, hard and brittle material processing, surface marking, and cleaning. The company currently has over 400 employees and has applied for more than 70 laser related patents since its establishment. It has also collaborated with well-known domestic universities and research institutes to develop cutting-edge light sources.

GZTECH Industrial Laser Products


We will leverage Optics Valley Technology, talent, and location advantages to solidify GZTECH's market position in the laser field. ”Huang Zhihua, chairman of GZTECH, said that in the future, the base will be built into an influential smart equipment manufacturing demonstration park in China.


Rendering of GZTECH Global Headquarters and Advanced Light Source R&D and Production Base


Source: Yangtze River Delta G60 Laser Alliance

Recomendações relacionadas
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    Ver tradução
  • Lumiotive Launches New LiDAR Sensor LM10

    Recently, optical semiconductor developer Lumiotive, headquartered in Seattle, USA, launched a new LiDAR sensor LM10, which is its first fully produced product of light controlled metasurface (LCM) technology designed for digital beam steering.The developers stated that compared to mechanical systems, their digital beam steering method overcomes the limitations of traditional LiDAR sensors in term...

    2023-09-02
    Ver tradução
  • Research progress on aerospace materials and anti ablation coatings: a review

    India B R. Dr. Jalandal Ambedkar National Institute of Technology and the Indian Institute of Technology reviewed and reported on the research progress of aerospace materials and anti ablation coatings. The related paper was published in Optics&Laser Technology under the title "Progress in aerospace materials and ablation resistant coatings: A focused review".a key:1. A comprehensive overview ...

    2024-11-21
    Ver tradução
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Ver tradução
  • RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

    The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX comp...

    2024-09-30
    Ver tradução