Português

Optical Drive Magnetic Control: A Breakthrough in Memory Technology

385
2024-01-06 14:21:21
Ver tradução

A recent study conducted by the Hebrew University suggests an undiscovered relationship between magnetism and light. This discovery may pave the way for extremely fast optical storage technology and creative optical magnetic sensor technology.

It is expected that this discovery will completely change the way equipment is manufactured and data is stored in a range of fields.

Amir Capua, Professor and Head of the Spintronics Laboratory at the Institute of Applied Physics and Electrical Engineering at the Hebrew University of Jerusalem, reported on significant developments in the field of optomagnetic interactions. The team's surprising discovery demonstrated the process of manipulating solid magnetic states using optical laser beams, providing practical significance for a range of industries.

The discovery of neglected photomagnetic components, which are often overlooked due to the slower reaction of magnets compared to light radiation, contradicts recognized knowledge. The team's research has revealed a new theory: the ability of rapidly oscillating light wave magnetic components to manipulate magnets redefines fundamental physical interactions.

It is interesting that people have found a simple mathematical relationship between the amplitude, frequency, and energy absorption of magnetic materials to characterize the strength of interactions.

This discovery combines concepts from two scientific disciplines that previously had little in common and were closely related to the field of quantum technology. We arrived at this understanding by using principles that have been established in the quantum computing and quantum optics communities, but are less important in the spintronics and magnetism communities.

When magnetic materials and radiation are in a perfect equilibrium state, their interaction is recognized. However, so far, the situation involving radiation and imbalanced magnetic materials has only been described very briefly.

The fundamental principles of quantum computing and quantum optics were discovered in this non-equilibrium field. Using the concepts of quantum physics, we studied this non-equilibrium state in magnetic materials and demonstrated evidence of the fundamental idea that magnets can react to light at a short time scale. In addition, this kind of communication has been proven to be very meaningful and effective.

In addition, the group has also developed a unique sensor that can combine this discovery to identify the magnetic composition of light. Compared to traditional sensors, this innovative design provides adaptability and integration for a wide range of applications, which may alter sensor and circuit design to achieve different uses for light.

Mr. Benjamin Assouline, a doctoral student at the Spintronics Laboratory, conducted this study, which is crucial for this discovery. Recognizing the potential significance of their findings, the team has submitted multiple related patent applications.

The study was funded by the Israel Science Foundation, the Peter Broyd Center for Innovation Engineering and Computer Science, and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

Source: Laser Net

Recomendações relacionadas
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Ver tradução
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    Ver tradução
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    Ver tradução
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    Ver tradução
  • Latest breakthrough! 3500W free output blue semiconductor laser

    The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to...

    2024-09-03
    Ver tradução