Português

NASA will demonstrate laser communications on the space station to improve space communications capabilities

930
2023-09-04 17:12:37
Ver tradução

Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023. 

ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

(Photo credit: NASA)

Advantages of laser communication systems

Laser communication systems use invisible infrared light to send and receive information at higher data transfer rates. It took about nine weeks for the original radio frequency system to transmit a complete map of Mars back to Earth, while it took about nine days using lasers. As a result, with higher data transfer rates, missions can send more images and videos to Earth in a single transmission. 

Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data transfer rates for low-Earth orbit missions. Laser communications provide greater flexibility for missions, as well as a quick way to get data from space. NASA is currently integrating this technology in near-Earth, lunar and deep space demonstrations.

In addition to the advantages of faster data transmission rates, laser systems also have key advantages in spacecraft design due to their lighter weight and lower energy consumption. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration via LCRD. 

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit (22,000 miles above Earth), further refining NASA's laser capabilities by transmitting data between two ground stations and conducting experiments. Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1,200 megabits per second. The data will then be sent from LCRD to ground stations in Hawaii and California. This demonstration will show how laser communication can benefit low-Earth orbit missions.

ILLUMA-T is being launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. During the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japanese Experimental Module Exposure Facility (JEM-EF). 

Once the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once that's done, the team will launch an onslaught of the payload's first light - a major milestone for the mission that will transmit the first laser beam to the LCRD through its optical telescope. Once the first light appears, data transmission and laser communication experiments will begin and continue throughout the planned mission.

Test lasers in different scenarios

In the future, operational laser communications will complement the radio frequency systems that many space missions still rely on to transmit data back to Earth. While ILLUMA-T is not the first mission to test laser communications in space, it brings NASA one step closer to actually applying the technology.

In addition to LCRD, ILLUMA-T's predecessors include: the 2022 TeraByte InfraRed Delivery system, which is currently testing laser communication on small Cubesats in low Earth orbit; Lunar laser communication demonstration to transmit data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; And 2017 Lasercomm Science's optical payload, which demonstrates how laser communication can speed up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data transfer rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: OFweek

Recomendações relacionadas
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    Ver tradução
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Ver tradução
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Ver tradução
  • SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

    The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028. Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and ErdmannTh...

    08-08
    Ver tradução
  • Ultra thin two-dimensional materials can rotate the polarization of visible light

    For centuries, people have known that light exhibits wave like behavior in certain situations. When light passes through certain materials, they can change the polarization of light waves (i.e. the direction of oscillation). The core components of optical communication networks, such as optical isolators or photodiodes, utilize this characteristic. This type of component allows light to propagate ...

    2024-04-27
    Ver tradução