Português

Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

476
2023-09-01 14:28:48
Ver tradução

Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.

The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve the connection between high-strength steel and thermoplastic resin based carbon fiber composite materials. The relationship between the interface thermal history, interface forming mechanism, and joint performance of different materials was elucidated, and a new laser heat input process strategy was proposed.

The relevant research results are published in Composite Structures under the title of "Effect of international thermal history on bonding mechanism of laser assisted joint of QP980-FRTP with adjustable flat top rectangular laser beam".

Developing high-performance multi material hybrid structures is a development trend in the aerospace field. Carbon fiber reinforced thermoplastic composites have ultra-high specific strength and toughness, and can be mixed with metals to meet the requirements of structural lightweight and cost control. There are significant differences in physical and chemical properties between metals and composite materials, and existing methods for connecting dissimilar materials have shortcomings. It is urgent to develop high-quality and efficient new connection processes.

Figure 1. Laser assisted connection process, ultra fast laser surface treatment structure, and interface thermal history monitoring
The team studied the interface thermal history during laser assisted bonding, analyzed the temperature state of the resin matrix and its wetting behavior on the metal surface, and compared the effects of different interface thermal histories on interface bonding defects, chemical composition, joint strength, and failure behavior. By using the interface thermal history design method and laser thermal input process control, the ultimate interface temperature and sufficient insulation time have been achieved, which helps the complete melting and diffusion of the resin matrix on the metal surface, fills the micropores at the interface, promotes chemical bonding, and produces high-quality joints with peak loads above 10kN and shear strengths above 22MPa. The relevant research results have broad application prospects in aerospace and other related fields.

Figure 2. Relationship between interfacial thermal history and resin wetting behavior on metal surfaces

Source: Laser Manufacturing Network

Recomendações relacionadas
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    Ver tradução
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Ver tradução
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    Ver tradução
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Ver tradução
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    Ver tradução