Português

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

477
2023-10-28 10:16:56
Ver tradução

The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.

Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been a research focus of international scientific and technological attention.

On October 26th, the first Ultrafast Laser Application Development Conference hosted by the China Optical Engineering Society opened at the Songshan Lake Materials Laboratory in Dongguan. Nearly 500 renowned academicians, experts, and enterprise representatives from the laser industry have jointly discussed the development trends, technological applications, and cutting-edge developments of ultrafast laser technology through technical exchanges, industry forums, demand docking, project roadshows, and other forms, promoting the high-quality development of the ultrafast laser industry.

"This year's Nobel Prize in Physics was awarded to scientists in the field of attosecond laser, which fully reflects the important position in the field of ultrafast laser science and technology." Wang Lijun, chairman of the conference and academician of the CAS Member, said that ultrafast lasers represented by picosecond and attosecond have broad application prospects in new generation information technology, additive manufacturing, aerospace, new energy vehicles, biomedicine and other fields. In this context, the first Ultrafast Laser Application Development Conference emerged.

At the opening ceremony, Wang Weihua, an academician of the CAS Member and director of the Songshan Lake Materials Laboratory, revealed that the Songshan Lake Materials Laboratory would jointly build the first advanced attosecond laser facility in China with the Institute of Physics of the Chinese Academy of Sciences and the Xi'an Institute of Optics and Mechanics, of which eight beam line construction tasks would be landed in Dongguan.

At present, the Songshan Lake Materials Laboratory has established the Ace Science Center, introducing the Chief Scientist Wei Zhiyi, and gathering a large number of outstanding researchers and engineers from both domestic and international sources. It is hoped that in the future, the laboratory can build a research center for ultrafast matter science, relying on large facilities such as China's scattered neutron source in the surrounding area to achieve world-class results in energy materials, information materials, and other fields.

Within two days, the conference will focus on two major topics: ultrafast laser technology and industry, and hold over 20 special seminars or reports to jointly explore forward-looking ideas and innovative achievements in the new situation, as well as how capital, technology, and market can promote the development of the laser industry and other hot topics.

At the same time, the conference will take multiple measures to jointly assist in the transformation and implementation of achievements, inviting leading enterprises at all levels of the industrial chain, key research teams, universities and research institutes, etc. to showcase outstanding scientific and technological achievements and application cases. Multiple technical exchanges, project roadshows, talent recruitment, docking negotiations, and other activities will also be held on-site.

Source: Southern Daily

Recomendações relacionadas
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Ver tradução
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    Ver tradução
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Ver tradução
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    Ver tradução
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    Ver tradução