Português

Laser engraving: Researchers have created a revolutionary technology

436
2023-11-24 14:16:34
Ver tradução

Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.

3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the characteristics of metals. Laser engraving has emerged as an innovative solution. This method can deposit a layer of metal powder and then fuse it together through laser. This process will generate complex metal objects. However, without precise management, these objects may reduce quality. Therefore, laser engraving has become the key to ensuring the integrity and performance of the finished product.

Enhancing Metal in 3D Printing through Laser Engraving

In 3D printing, traditional metal processing methods are not always applicable. This is where laser engraving comes in handy. The Cambridge team did not use traditional heating and beating techniques, but instead chose a laser that directly changes the metal crystal structure on the object. This process enhances the strength of the metal and reduces its brittleness, like a microscopic and precise hammer.

Thoroughly changing metal processing

The inspiration for laser carving comes from the metal manufacturing methods of our ancestors. By alternately using laser processing and untreated areas, researchers can finely control the characteristics of objects. According to Dr. Matteo Seita, this technology can reduce the cost of metal 3D printing. It promises more sustainable and simpler production, possibly eliminating low-temperature treatment.

In short, laser engraving represents an important progress in metal 3D printing. It can create complex metal objects with enhanced properties. This innovation has led to more efficient and sustainable manufacturing, redefining the use of metals in many engineering applications.

The potential of laser engraving goes far beyond simple manufacturing. In the fields of aerospace, automotive, and medicine, it is used to produce lighter and more durable parts. The accuracy of the laser reduces material waste and helps to utilize resources more wisely. By optimizing material properties, the service life of products can be extended, thereby promoting a circular economy.
In addition, this technology opens up new possibilities in design. Designers and engineers can explore forms that were previously inaccessible. This creative freedom may bring unexpected innovation in multiple fields.

In addition, laser engraving has stimulated research and development. Scientists can try new alloys and composite materials to break through the boundaries of material performance. These explorations may lead to the discovery of revolutionary materials with different applications.

Source: Laser Network

Recomendações relacionadas
  • German laser company Marvel Fusion recently raised 62.8 million euros in funding

    Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received add...

    2024-10-12
    Ver tradução
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    Ver tradução
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Ver tradução
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    Ver tradução
  • Single photon avalanche diode detector enables 3D quantum ghost imaging

    A team of researchers at the Fraunhofer Institute for Optoelectronics, Systems Technology and Image Development and Karlsruhe Institute of Technology are using single-photon avalanche diode (SPAD) arrays to achieve three-dimensional (3D) quantum ghost imaging.The new method, called "asynchronous detection," produces the lowest photon dose of any measurement and can be used to image light-sensitive...

    2023-09-06
    Ver tradução