Polski

Diffractive optical elements: the behind the scenes hero of structured light laser technology

349
2024-04-10 14:45:47
Zobacz tłumaczenie

In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Holoor and everyone explore the world of DOE in depth, unveiling its mysterious veil.

What is a diffractive optical element?
Simply put, diffractive optical elements are like a special transparent window that can precisely shape and control the laser beam passing through it through diffraction effects - the bending phenomenon of light when passing through small holes or slits. By creating a controlled phase delay along the path of the laser beam, DOE can generate diffraction rays with preset orders, thereby generating any desired beam pattern.

How does DOE generate structured light?
Structured light, in short, is light that is integrated into a specific pattern for three-dimensional measurement and analysis of objects. To generate this type of structured light, DOEs typically adopt a periodic grating like structure design, which allows them to generate any desired order distribution from simple lines to complex grids. This flexibility and precision make DOE an indispensable part of structured light laser technology.

Unique advantages of DOE
A significant advantage of DOEs is that they are not sensitive to the center of the beam size, which means that regardless of how the diameter of the beam changes, DOEs can maintain consistency in their shaping effect. This sturdy and durable feature, combined with their ability to easily integrate into structured light laser sources, enables DOEs to demonstrate high reliability and efficiency in various application scenarios.

Beam shaping diffusers and other applications
In addition to traditional periodic grating structures, DOE also includes other types of components such as beam shaping diffusers. These diffusers can generate multiple beam patterns such as lines, linear arrays, grids, and even more unique distributions required for special structured light applications, such as in tube sensing. These diverse beam modes further expand the application range of structured light laser technology, from industrial manufacturing to medical imaging, and then to safety monitoring and other fields.

conclusion
Diffractive optical elements are the behind the scenes heroes in structured light laser technology. They not only provide an efficient and reliable way to generate and control structured light, but also open up new possibilities for various 3D measurement and image capture tasks. With the continuous advancement of technology, we can expect Holoor DOE to bring more innovation and breakthroughs in the future, helping us explore and understand the world around us in a new way. Under the guidance of light, the unknown and complex three-dimensional world will gradually become clear and visible, revealing its unique beauty and secrets.

Source: Sohu

Powiązane rekomendacje
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Zobacz tłumaczenie
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    Zobacz tłumaczenie
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    Zobacz tłumaczenie
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    Zobacz tłumaczenie
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    Zobacz tłumaczenie