Polski

New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

672
2024-04-02 14:36:03
Zobacz tłumaczenie

Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical computing, optical quantum computing, and information processing applications.

The Mach Zehnder interferometer (MZI) is a core device for high-precision programming operations in optical (quantum) computing chips. By combining and modulating the MZI and phase shifter, the key step of quantum state encoding can be completed, improving the information processing capability of optical quantum chips.

Specifically, the experimenter adjusts the phase difference of the transmitted light in the upper and lower arms of the MZI by applying different currents and voltages, thereby changing the intensity and phase of the output light, resulting in interference and achieving control of the optical path. To maximize the accuracy of chip calculations, it is necessary to accurately find the functional relationship between the phase shifter and the driving voltage and current. With the sharp increase in the number of connected MZIs on the chip, the combination of current, voltage, and phase shifter results in an exponential increase. Therefore, it is particularly important to find an efficient and feedback based current and voltage regulation method for phase shifters.

Thermal tuning test plan for MZI silicon polishing chip
The Sizhen programmable multi-channel current (voltage) source has a compact size and can achieve up to 64 channels of high-precision constant current and constant voltage output. The experimenter connected the current and voltage source to the PCB download adapter board through a shielded cable via SCSI, which can simultaneously apply appropriate voltage or current to 64 channels and adjust to obtain the desired optical signal. The loading values of each channel are initially random, and the experimenter finds the appropriate value through each iteration of the feedback function to achieve fast switching of current and voltage setting values. Among them, the maximum single channel current value of the series products can reach 100mA.

This solution supports two current and voltage regulation methods:
1. Manual adjustment: Directly input indicators through upper computer software
2. Python instruction automation control: The current and voltage source is programmed in Python to transmit control signals to the chip, then the PD value is detected and fed back to the current and voltage source through computer coding to change the control signal until the desired result is obtained.

Figure (a) shows a chip structure that can achieve any unitary transformation, and Figure (b) shows a chip structure that can achieve any two bit quantum operation, integrating a large number of MZI devices on the chip

Thermal tuning testing scheme for MZI silicon zenith computing chip

Source: Guangxing Tianxia

Powiązane rekomendacje
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Zobacz tłumaczenie
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    Zobacz tłumaczenie
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    Zobacz tłumaczenie
  • The United States promotes the development of next-generation EUV lithography technology

    LLNL has long been a pioneer in the development of EUV lithography technology.A laboratory located in California will lay the foundation for the next development of extreme ultraviolet (EUV) lithography technology. The project is led by Lawrence Livermore National Laboratory (LLNL) and aims to promote the next development of EUV lithography technology, centered around the laboratory's developed dr...

    01-06
    Zobacz tłumaczenie
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Zobacz tłumaczenie