Polski

The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

367
2023-08-24 11:46:55
Zobacz tłumaczenie

Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals. 

In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However, integrated EOM, as an independent on-chip component, is usually separated from the light source.

Therefore, additional interfaces for coupling light from the light source to the waveguide of the on-chip device are essential. Although state-of-the-art coupling schemes, including edge coupling and grating coupling, have been adopted, they are still affected by limited integration density and narrowband operation, respectively.

In addition, both coupling schemes require ultra precise alignment and complex packaging, making on-chip devices expensive for customers. Therefore, there is a need for an EOM device that avoids coupling complexity and further reduces coupling losses.

In a new paper published in the journal Optics: Science and Applications, a group of scientists developed a method of directly integrating EOM devices onto the end face of single-mode fiber jumpers, using standard fiber interfaces to connect EOM devices to light sources.

Using the standard nanomachining method developed in our previous work, the EOM module can be directly integrated on the tip of a single-mode fiber, thus avoiding coupling processing in the essence of superfiber EOM, "said Professor Qiu Min.

This plasma superfiber EOM has a clear plasma organic mixing configuration. Benefiting from ultra-thin and high-quality plasma metasurfaces, nano processing friendly and efficient EO polymers, the spectral amplitude and quality factor of light are well controlled to improve the resonance sensitivity of EO modulation.

More interestingly, by properly designing plasma mode, resonant waveguide mode, and Fabry Perot mode, tunable dual band operation can be achieved in the telecommunications O and S bands, "added co lead authors Lei Zhang and Xinyu Sun.

The microfiber EOM is further driven by DC/AC signals. The modulation speed of the metafiber EOM can reach up to 1000 MHz, with a bias voltage of ± 9 V, which is the best performance of the lumped fiber integrated EOM.

This type of ultra fiber EOM provides a new perspective for designing ultra compact and high-performance EO devices, which are suitable for applications that require compact configurations, high integration capabilities, and low coupling losses, such as active mode-locked fiber lasers and tunable broadband fiber polarizers. This work also provides a way for the "plug and play" implementation of optoelectronic devices and ultra compact "all fiber" optical systems in communication, imaging, sensing, and other fields Professor Wang Jiyong added.

Source: Laser Network

Powiązane rekomendacje
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Zobacz tłumaczenie
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Zobacz tłumaczenie
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    Zobacz tłumaczenie
  • Exail acquires laser company Leukos

    On January 6, 2025, Exail acquired Leukos, a laser company specializing in advanced laser sources for metrology, spectroscopy, and imaging applications. The financial terms of this acquisition have not been disclosed yet. Leukos will operate as a subsidiary of Exail, retaining its product portfolio and brand. This acquisition combines Leukos' advanced technologies, including pulsed micro lasers,...

    01-08
    Zobacz tłumaczenie
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Zobacz tłumaczenie