Polski

Ireland's first biological Brillouin microscope at Trinity College Dublin

725
2025-07-14 11:06:42
Zobacz tłumaczenie

A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.
This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.

Brillouin microscopy offers a route to optical investigation of a biological sample's mechanical and viscoelastic properties, via the phenomenon termed Brillouin light scattering (BLS).

 



Tissue analysis at Trinity College Dublin


This occurs when photons traveling through matter interact with phonons, compressive waves created in the same matter by external stimulus or compression - effectively a change in density caused by an acoustic wave.

Brillouin spectroscopy has already been put to use probing cell dynamics and testing the mechanical properties of tumors, yielding data about cells' physical properties than can be hard to obtain otherwise.

The ability to map and quantify the compressibility, viscoelasticity and the detailed mechanics of materials and biological tissues non-invasively enables researchers to assess the mechanical properties of live systems without interfering with them, monitoring a system and how it changes over time.

Working alongside instrument vendors CellSense Technologies, the Dublin project hopes to expand the application of BLS to a wider range of biological systems, exploiting how cellular and tissue mechanics can be potent regulators of cell disease, dysfunction and regeneration.

Clinical translation in ophthalmology

To that end the team at the Trinity Centre for Biomedical Engineering has also contributed to a new consensus report on Brillouin light scattering microscopy applied to biological materials, published in Nature Photonics.

The report is intended to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different, often self-built, spectrometers, a consensus statement is particularly timely to ensure unified advancement, noted the authors.

"Regardless of the field's trajectory, it is currently in a serendipitous position," noted the report. "While BLS is still in its infancy in regard to clinical translation, one area where it has transitioned to clinical applications is that of ophthalmology. Here it is used to identify the severity of pathologies such as keratoconus associated with spatial changes in corneal biomechanics."

The Trinity College Dublin team predicts that studying the mechanical properties of live systems will enable leaps forward in the understanding of how inflammation and cancer develop.

"However, it’s also important to understand its use is not limited to biomedical research and related applications," commented Michael Monaghan from the School of Engineering at Trinity. "It will help scientists push boundaries in fields such as materials science, ICT, energy storage, pharmaceuticals, and medical devices and diagnostics."

Source: optics.org

Powiązane rekomendacje
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    Zobacz tłumaczenie
  • Phil Energy from South Korea wins mysterious order from European battery manufacturer

    Recently, Phil Energy, a South Korean secondary battery equipment manufacturer, successfully won an order from a European battery manufacturer to manufacture the next generation 46 series cylindrical battery manufacturing equipment. At present, both parties have signed a supply agreement for this cooperation, but have not disclosed the customer name and order size to the public. It is understood...

    2024-07-25
    Zobacz tłumaczenie
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    Zobacz tłumaczenie
  • Researchers have successfully developed the world's first superconducting broadband photon detector

    Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.The band width of the detector is more than 200 times that of trad...

    2023-11-02
    Zobacz tłumaczenie
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Zobacz tłumaczenie