Polski

Dark Solitons Discovered in Ring Semiconductor Lasers

855
2024-02-01 17:38:34
Zobacz tłumaczenie

Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.

Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser physics. Sometimes referred to as optical rulers, they serve as the basis for time and frequency standards, used to define many fundamental quantities in science. However, traditional frequency comb lasers are bulky, complex, and expensive, and laser experts are keen on developing simpler versions that can be integrated into chips.

In a similar attempt in 2020, researchers from the Federico Capasso team at Harvard University unexpectedly discovered that after initially entering a highly turbulent state, the mid infrared "fingerprint" region widely used in molecular spectroscopy in quantum cascade ring lasers stabilized to a stable frequency comb - although only nine teeth.

A ring laser has an optical cavity in which light is guided around the closed loop, and a quantum cascade laser is a semiconductor device that emits infrared radiation.

"All these interesting results come from controlling devices - we didn't expect this to happen," said Marco Piccardo of Harvard University. After several months of confusion, researchers have found that this effect can be understood by describing the instability of nonlinear differential equations in systems - the complex Ginzberg Landau equation.

In this new study, Capasso and his colleagues collaborated with researchers from the Benedikt Schwarz group at the Vienna Institute of Technology. The Austrian team has developed several frequency comb designs based on quantum cascade lasers. Researchers integrated waveguide couplers into the same chip. This makes extracting light easier and achieves greater output power. It also allows scientists to adjust coupling losses by pushing the laser between its frequency comb and the state in which it should operate as a continuous wave laser with continuous output radiation.

However, in the "continuous wave" system, even more strange things have happened. Sometimes, when the laser is turned on, its behavior is only a continuous wave laser, but turning off and on the laser may cause one or more dark solitons to randomly appear.

Solitons are nonlinear, non dispersive, and self enhancing radiation wave packets that can propagate indefinitely in space and effectively transmit to each other. They were first observed in water waves in 1834, but were later discovered in many other physical systems, including optics.

Surprisingly, this latest observation shows that solitons exhibit small gaps in continuous lasers. The seemingly small changes in laser emission cause significant changes in its spectrum.

"When you talk about continuous wave lasers, it means you have a monochromatic peak in the spectral domain," Piccardo explained. This decline means the entire world... These two images are linked by the principle of uncertainty, so when you have very, very narrow things in space or time, it means that in the spectral domain, you have many, many patterns, and many, many patterns mean that you can do spectroscopy to observe molecules emitted over a very, very large spectral range.

I have occasionally seen dark solitons before, but they have never appeared like this in small electrically injected lasers. Picardo said that from a spectral perspective, dark solitons are as useful as bright solitons. However, some applications require bright pulses. The technology required to generate bright solitons from dark solitons will be the theme of further work. Researchers are still studying how to generate solitons with certainty.

A key advantage of this comb like design for integration is that, due to the fact that light circulates only in one direction in a circular waveguide, researchers believe that the laser is essentially unaffected by feedback that may disrupt many other lasers. Therefore, it does not require a magnetic isolator, as magnetic isolators are often not commercially integrated into silicon chips.

Considering integration, researchers hope to extend this technology beyond quantum cascade lasers. "Although chips are very compact, quantum cascade lasers typically require high voltage to operate, so they are not the true way to place electronic devices on the chip," Piccardo said. If this can work in other lasers, such as interband cascade lasers, then we can miniaturize the entire thing and it can really be powered by batteries.

Laser physicist Peter Delphi from the University of Central Florida in Orlando believes that this work brings hope for future work. "Dark pulses in the frequency domain are a set of colors, and although their spectral purity is very good, their precise positioning has not yet been achieved," he said. However, in fact, they can achieve this - using electric pumping equipment to create solitons on chips - which is actually an extremely significant progress. There is no doubt about it.

The study was described in the journal Nature.

Source: Laser Net

Powiązane rekomendacje
  • AEROTECH releases updated AUTOMATION1 motion control platform

    Aerotech is a global leader in precision motion control and automation, and every release has made the Automation1 motion control platform even stronger and more user-friendly. Version 2.5 brings TCP socket interface (test version), Automation1 MachineApps HMI development, new auxiliary module for motor settings, and improved machine settings for galvanometer laser scanning heads.Automation1 conti...

    2023-08-14
    Zobacz tłumaczenie
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    Zobacz tłumaczenie
  • Shanghai Optics and Machinery Institute has made progress in near-field state analysis of high-power laser devices based on convolutional neural networks

    Recently, the research team of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics identified and analyzed the abnormal near-field output of the SG - Ⅱ upgrade device by using the spatial domain computing method and the deep learning model with attention mechanism in response to the requirements of real-time and effective...

    2024-04-25
    Zobacz tłumaczenie
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Zobacz tłumaczenie
  • A major investment! Lumentum completes acquisition of research and development site in Carswell, UK

    Lumentum, a leading designer and manufacturer of innovative optical and photonic products, has announced that it has completed the acquisition of a site in Caswell, UK.Lumentum revealed that it has made significant investments in the site over the past two years and is currently undergoing development upgrades for its state-of-the-art cleanrooms and laboratories to continue to support the developm...

    2023-09-13
    Zobacz tłumaczenie