Polski

Safran Group believes that additive manufacturing is playing an increasingly important role in engines

274
2025-06-18 10:31:54
Zobacz tłumaczenie

Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines.

 



In early June, Delphine Derud, Vice President of Engineering at Safran Aircraft Engines, stated that compared to traditional cast parts, the mass of the turbine rear casing has been reduced by one-third, and the production cycle has been shortened from 18 months to three weeks. The ultimate goal is to compress it to one week or even shorter in order to incorporate design changes in the later stages of development.

Francois Xavier Foubert, CEO of Safran Additive Manufacturing Park, pointed out that although melting metal through additive manufacturing is not the most economical way, if eliminating welding can bring benefits, such as significant weight reduction or achieving more complex configurations, integrating more work, or making the overall design lighter, then this technology is meaningful; Traditional manufacturing requires 3-10 pounds of metal to produce a 1-pound component, while additive manufacturing only requires 1.5 pounds, greatly improving material utilization; The current additive manufacturing turbine casing requires almost no mechanical processing and can achieve "near net forming".

Safran Group has applied additive manufacturing to engine production, and currently has 14 components (made of aluminum, nickel based high-temperature alloys, or titanium) in mass production. Fubel stated that 25% of additive manufacturing applications in RISE validation machines will represent the production standards for future engines. He predicts that additive manufacturing equipment will be able to produce larger parts: parts with a diameter of 2 meters can be manufactured by the early 2030s; Installing more high-power lasers on a single device can melt thicker layers of metal powder, thereby improving efficiency.

Fubel reminds designers that there are risks involved in developing new categories of metal powders. A single device is only compatible with one type of powder, and multiple types of metal powders require multiple devices. Given that each device is worth 3 to 5 million euros (3.4 to 5.7 million US dollars), manufacturers tend to control the number of devices, while also requiring a single device to support multiple component designs.

Fubel added that although additive manufacturing applications are expanding, other processes remain competitive. Due to its low cost, the casting process may be used to manufacture some structurally simpler components. Complex metallurgical techniques may be suitable for manufacturing single crystal components; The forging process may still be suitable for manufacturing high load components. Engine manufacturers can sometimes choose between these three processes. Eric Darbier, Executive Vice President and Chief Technology Officer of Safran, pointed out that "forging, casting, or additive manufacturing should be chosen with lower costs while ensuring autonomy and controllability." Although the mine cannot be relocated, the process of atomizing metal into powder can be localized. Airbus and Safran may request joint venture metal supplier Obert Duvall to construct titanium alloy atomization facilities.

Source: Yangtze River Delta G60 Laser Alliance

Powiązane rekomendacje
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Zobacz tłumaczenie
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    Zobacz tłumaczenie
  • Photovoltaic converters for power transmission systems

    Scientists from the University of Hahn in Spain and the University of Santiago de Compostela conducted research to determine the most suitable semiconductor materials for high-power light transmission in terrestrial and underwater environments.HPOT, also known as laser power transfer, is a method of transmitting continuous power to a remote system using a monochromatic light source through an opti...

    2023-12-29
    Zobacz tłumaczenie
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    Zobacz tłumaczenie
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Zobacz tłumaczenie