Nederlands

Shanghai Institute of Optics and Mechanics proposes a new scheme of Er doped silicate fiber as an extended L-band broadband amplifier

535
2024-06-05 15:03:58
Bekijk vertaling

Recently, Hu Lili, a research group of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new scheme based on field strength optimization of Er doped silicate fiber as an extended L-band broadband amplifier. Relevant research achievements were published in Optics Letters under the title of "Er doped silicate fiber amplifiers in the L-band with flat gain".

The rapid development of big data and artificial intelligence has put forward higher requirements for the capacity of dense wave division multiplexers (DWDMs) in the new generation of optical communication systems. Compared to the mature C-band (1530-1565nm) erbium-doped fiber amplifier (EDFA), the L-band (1565-1625nm) EDFA has become a new generation of scalable optical communication products. However, the development of L-band EDFA faces difficulties and challenges: the gain of Er-doped fibers is limited by low longwave emission cross-sections and severe excited state absorption, resulting in very small gains for wavelengths greater than 1600nm. Therefore, how to improve the long wave gain of Er doped fiber materials is a key scientific problem that urgently needs to be solved in L-band broadband amplifiers.

The research team proposes a new scheme of micro ion field emphasis control to enhance the gain and spectral shaping of Er ions in a silicate fiber matrix. The feasibility of using silicate optical fibers as long wave gain enhancing substrates for Er ions has been confirmed both theoretically and experimentally. This scheme has achieved significant improvement in L-band gain and optimization of gain flatness in Er doped silicate optical fibers. At the same time, by adopting an all fiber scheme with heterogeneous fiber fusion, only a 1.5m long silicate fiber is used. At the longest wavelength of 1625nm in the L-band, the gain coefficient is 4.7dB/m, which is better than the 0.3dB/m of quartz fiber. In addition, the gain flatness of the fiber in the L-band is 0.8dB, which is better than the 5dB of quartz fiber. Compared to quartz fiber, this fiber has a higher doping concentration, shorter usage length, and larger gain coefficient, providing key material support for the new generation of L-band EDFA.

This work has received support from the National Natural Science Foundation of China and national key projects.


Figure 1: L-band gain of Er doped silicate optical fiber

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Gerelateerde aanbevelingen
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    Bekijk vertaling
  • Tesla Intelligent Robot Vacuum Laser AI200 has a maximum operating time of 130 minutes

    In most cases, devices that are part of so-called smart homes have become a part of our lives. These appliances have a significant impact on our comfort level and contribute to daily household chores, such as cleaning. There are many products in the market that have paved the way in this regard, but the amount we usually have to pay for them effectively prevents us from purchasing.Of course, we ca...

    2023-11-10
    Bekijk vertaling
  • Luxium Solutions completes strategic acquisition of Inrad Optics, a leading optical materials company

    Recently, Luxium Solutions, a high-performance crystal material supplier, announced the successful completion of its strategic acquisition of Inrad Optics, a leading optical materials company. This milestone transaction not only greatly enriches Luxium's innovative product matrix, but also injects valuable resources, operational wisdom, and capital drive into Inrad Optics. Both parties will work t...

    2024-07-20
    Bekijk vertaling
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    Bekijk vertaling
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Bekijk vertaling