Nederlands

Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

609
2023-10-26 16:07:10
Bekijk vertaling

With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.

Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon is considered a promising strategy to solve this problem.

However, most existing QD microcavity lasers are very sensitive to cavity changes, which fundamentally limits the performance of QD microcavity lasers.

It is reported that in a new paper titled "Room performance continuous wave topological Dirac vortex microcavity lasers on silicon" published in the journal "Light: Science&Applications" recently, a team of scientists led by Professor Sun Xiankai from the Chinese University of Hong Kong, Professor Zhang Zhaoyu from the Chinese University of Hong Kong (Shenzhen), and Dr. Chen Siming from University College London in the UK, The room temperature continuous wave Dirac vortex topology laser with InAs/InGaAs QD material grown on a single chip on coaxial silicon substrate at telecommunication wavelengths has been experimentally demonstrated, achieving breakthroughs in laser technology.

a. Concept diagram of a Dirac vortex topology laser grown epitaxial on silicon substrate. The photonic crystal structure is defined in the active layer and suspended by partially removing the sacrificial layer. b. The oblique view scanning electron microscope image of the realized topological Dirac vortex photonic crystal cavity. Scale: 500 nm. c. Cross section bright field transmission electron microscopy image of the active layer containing four stacked InAs/InGaAs QD layers.

It is reported that the laser has topological robustness and is not affected by external defects and cavity size changes, which is expected to revolutionize the technology of CMOS compatible photonic and optoelectronic systems on chips. This breakthrough may pave the way for the next generation of silicon based PICs with topological robustness and versatility.

The Dirac vortex state is a mathematical analog of the famous Mayorana Fermion (so-called "angel particle") in superconductor electronic systems, and has recently been discovered as a new strategy for tightly and robustly limiting classical waves. This method has significant advantages, such as a larger free spectral range than most existing optical cavities, making it an ideal choice for achieving single-mode surface emitting lasers.

The research team designed and manufactured a Dirac vortex photonic crystal laser using auxiliary orbital degrees of freedom in topological insulators. In this way, they are able to control the near-field of the Dirac vortex cavity to obtain linearly polarized far-field emissions. Then, they observed vertical laser emission from these cavities under continuous wave pumping at room temperature.


Experimental characterization of Dirac vortex topology laser. a. The variation of micro region fluorescence spectrum of Dirac vortex laser with pump power. b. The variation of micro region fluorescence spectral intensity (purple dots) and line width (orange squares) with pump intensity. c. The micro region fluorescence spectrum measured when the pump intensity is 0.395 kW cm-2. d. The variation of laser wavelength (purple dot) with pump intensity. e. The laser spectra of different Dirac vortex lasers indicate that precise regulation can be achieved in the wavelength range of 1300-1370 nm.

The breakthrough achievement of Dirac vortex QD laser is not only expected to become an on chip light source for the next generation of silicon-based photonic integrated circuits, but also opens the door to exploring topological phenomena such as non Hermitian properties, boson nonlinearity, and quantum electrodynamics. This may lead to significant progress in the field of optoelectronics and pave the way for more efficient and powerful communication technologies.

Source: Compiled by Old One

Gerelateerde aanbevelingen
  • Tsinghua University makes progress in the field of pre sensing optical computing

    In the era of the Internet of Things, visual image sensors, as key devices in the intelligent society, are embedded in various devices such as mobile communication terminals, smart wearable devices, automobiles, and industrial machines. With the continuous expansion of applications, higher requirements have been put forward for the system power consumption, response speed, safety performance, and ...

    2024-08-05
    Bekijk vertaling
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Bekijk vertaling
  • Precision laser manufacturer Preco appoints Jacob Brunsberg as CEO

    Recently, Preco, a leading enterprise in precision laser material processing and laser equipment manufacturing solutions, officially announced a major personnel appointment: Jacob Brunsberg, an outstanding senior manufacturing and technology management expert, has been appointed as its CEO. Mr. Brunsberg is a renowned senior manager in the field of advanced manufacturing and technology, with man...

    2024-09-23
    Bekijk vertaling
  • Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

    The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the wo...

    2023-11-06
    Bekijk vertaling
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    Bekijk vertaling