Nederlands

Laser technology reveals hidden gases in complex mixtures

220
2024-01-11 14:29:04
Bekijk vertaling

Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.

They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the concentration of the gas can be calculated. The chemicals to be tested determine which detection wavelength should be used. In fact, multiple molecules can absorb the same amount of light, even at carefully selected wavelengths, which is a typical problem.

The efficiency of measurement methods is limited by this phenomenon called cross sensitivity. So far, this issue has been resolved, either by conducting additional measurements at various wavelengths, such as measuring spectra, or by using gas chromatography to separate interfering gases before measurement.

Dr. Ibrahim Sadiek, a former doctoral candidate at Gernot Friedrich and Leibniz Institute of Plasma Science and Technology, has now proven that there is a simpler solution.

Scientists have created a technology that enables them to surpass this cross sensitivity in absorption spectroscopy, even when producing single wavelength data. The scientific journal Science Report recently released a feasibility study on a novel, patent pending dual species one wavelength technology based on selective optical saturation.

This new technology utilizes the optical saturation phenomenon in molecules. Only very high light intensity - now easily generated by lasers - can lead to optical saturation. Subsequently, these molecules showed "transparency" in the absorption spectrum, indicating that the light emitted by radiation is no longer weakened.

The characteristic of the corresponding gas type is the point where the sample becomes transparent. Due to the deviation of concentration measurement caused by light saturation, it was previously believed to be harmful to absorption measurement and should be avoided at all costs.

As shown by Sadiek and Friedrich's research, using selective optical saturation can even measure the number of two molecules that completely interfere with each other at a given wavelength.

For example, a typical problem in practice is the detection of very low concentrations of chlorinated hydrocarbons in the atmosphere.

Currently, his team is conducting maritime research projects to advance the application of this technology in traditional absorption spectrometers. Then, on-site measurements will demonstrate the potential for reducing cross sensitivity to better explore the exchange process at the water air interface. If trace gases have sufficiently diverse saturation intensities, this method can theoretically be used to simultaneously detect multiple trace gases.

Source: Laser Net

Gerelateerde aanbevelingen
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Bekijk vertaling
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    Bekijk vertaling
  • The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

    Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.Distribut...

    2023-09-05
    Bekijk vertaling
  • MKS Malaysia Penang Supercenter Factory Holds Groundbreaking Ceremony

    Recently, MKS Instruments held a groundbreaking and celebration ceremony for its Supercenter factory in Penang, Malaysia.This important moment has been witnessed jointly by the Malaysian Investment Development Authority (MIDA) and Invest Penang, which will help meet the growing demand for semiconductor equipment for wafer manufacturing in the region and globally. This advanced factory, covering ...

    2024-11-01
    Bekijk vertaling
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    Bekijk vertaling