Nederlands

Laser link between European Space Agency containers and space

191
2024-02-12 20:26:15
Bekijk vertaling

The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.

The station has officially become a part of the Atomic Energy Agency's Optics and Optoelectronics Laboratory and will serve as a flexible testing platform for optical communication hardware and systems. ETOGS can also support other activities that require observing the sky with telescopes or pointing lasers at the sky, such as space debris monitoring or determining orbits through laser ranging.

ETOGS consists of a standard 6-meter long container that has been customized to accommodate telescopes with a diameter of 80 centimeters in the lifting platform and climate control operator area. Laser emitters, receivers, and other required equipment can be connected to this flexible structure to serve each specific activity. The station is hauled by trucks and can be deployed anywhere needed, powered by power accessories, diesel generators, or solar cell modules.

European Space Agency optoelectronic engineer Jorge Pires explained, "The creation of this station is indeed to meet the needs of the rapidly developing optical communication community for flexible testing platforms, rather than being deployable in representative ground environments. One of the most relevant issues in optical communication is to what extent the surrounding environment affects the quality of the link, such as background light in urban areas or atmospheric turbulence caused by weather.".

When it comes to receiving signals from quantum communication systems, this is most crucial because the amount of light involved is very low, and information is transmitted through a single photon. With this station, we can truly start answering these questions by operating at many different locations. By providing our partners with such ready-made testing platforms, we support hardware validation and iteration without the high development costs of using dedicated ground stations.

Optics and quantum technology are expected to completely change connections on a global scale. By using optical pulses with frequencies much higher than radio waves, optical communication can transmit more data at a given moment. Optical communication through optical fiber cable is the foundation of modern terrestrial Internet infrastructure, but the link with satellite still depends on low frequency and low bandwidth radio waves to a large extent.

By utilizing the quantum properties of light, systems such as quantum key distribution will help protect data to a level previously unimaginable; The physical properties of light particles protect the security of encryption key exchange, enabling message transmission to resist eavesdropping by malicious actors.

Jorge added, "The 80cm telescope at this station is the baseline size for quantum key distribution on a commercial scale, so we expect the station to be used to demonstrate and validate satellite based quantum communication.".

The first operational mission of this new European Space Agency asset will be to support the deep space optical communication demonstration of NASA's planned Psyche mission in 2025.

The European Space Agency is collaborating with a European consortium and the National Observatory of Athens to develop and deploy ETOGS at Kryoneri Observatory in Greece to accommodate multi beam ground laser emitters.

Source: Laser Net

Gerelateerde aanbevelingen
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    Bekijk vertaling
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    Bekijk vertaling
  • Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

    Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super trans...

    2023-10-13
    Bekijk vertaling
  • Coherent Company Launches Industry's First 1200 mW Pumped Laser Module for Optical Amplification in DWDM Networks

    Coherent Corporation, the leader in erbium-doped fiber amplifier pumped laser technology for deployment in optical networks, announced today the launch of the industry's first pumped laser module in a 10 pin butterfly package with an output power of 1200 mW.The rapid development of optical communication technology is reaching the theoretical limit of fiber capacity and driving the expansion of tr...

    2023-09-22
    Bekijk vertaling
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    Bekijk vertaling