Nederlands

CU Boulder's liquid scanning technology can better observe brain activity

7
2025-10-20 10:58:49
Bekijk vertaling

CU Boulder published a study in Optical Letters demonstrating a new high-speed laser guidance method for imaging applications, using a fluid scanner built around an electrowetting prism to replace traditional mechanical components.

"Most laser scanners today use mechanical mirrors to steer beams of light," said Darwin Quiroz from CU Boulder.

"Our approach replaces that with a transmissive, non-mechanical device that’s smaller, lower-power and potentially easier to scale down into miniature imaging systems."

Smaller and non-mechanical ways to scan lasers should help meet the demands of modern rapid imaging and fluorescence microscopy systems, where choices are often limited by weight, size and power requirements, noted the team.

These demands are further magnified with the growing interest in miniature microscopy for in vivo imaging of neuronal activity and stimulation.

 

 

Darwin Quiroz: new ways to understand the brain


Electrowetting optics could be an answer, using an electric field to change the curvature of a conductive liquid and so control the behavior of a laser beam at the liquid surface. This principle has been put to use in applications such as lidar, but previous work with electrowetting prisms was limited to slow scanning speeds or one-dimensional beam steering.

Transform the study of PTSD or Alzheimer's disease

The project built on previous CU Boulder studies into using such one-dimensional electrowetting scanners in a microscope, and also how to employ the same principle in an OCT platform to improve examination of the eye or the heart.

The new device involves a cylindrical glass tube 5 millimeters tall filled with two immiscible liquids, deionized water and a cyclohexane. Four individually accessible electrodes around the outside of the cylinder control the tilt of the interface between the liquids, so a laser passing through the cylinder from one fluid to the other can be deflected by different amounts when it crosses the slanted interface.

In trials, the device demonstrated two-dimensional scanning at speeds from 25 to 75 Hz when built into a two-photon laser scanning microscope. Successful imaging of 5-micron targets is a milestone toward making the devices practical for real-world imaging, noted the project.

"A big challenge was learning how to drive the device in a way that produces linear, predictable scanning without distortion," commented Quiroz. "We discovered that the prism has resonant modes like standing waves that we could actually leverage for scanning at higher speeds."

Since electrowetting prisms are compact and energy efficient, they could be integrated into miniature microscopes small enough to sit on top of a live animal's head, helping the study of brain function in living subjects.

"Imagine being able to watch brain activity in real-time while an animal runs through a maze," said Quiroz. "That’s the kind of in vivo imaging this technology could enable. It could transform how we study neurological conditions like PTSD or Alzheimer’s disease."

Source: optics.org

Gerelateerde aanbevelingen
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    Bekijk vertaling
  • Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

    Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non ...

    2023-10-17
    Bekijk vertaling
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Bekijk vertaling
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    Bekijk vertaling
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Bekijk vertaling