Nederlands

New technology from Swedish universities enables real-time laser beam forming and control

733
2024-12-19 15:35:20
Bekijk vertaling

Dr. Yongcui Mi from Western University in Sweden has developed a new technology that enables real-time laser beam shaping and control for laser welding and directional energy deposition using laser and metal wire. This innovative technology draws on the mirror technology used in advanced astronomical telescopes.



Adaptive beam shaping using deformable mirror technology (Image source: Western University)

 


In the coming years, this new technology is expected to achieve more efficient and reliable high-power laser welding, as well as directional energy deposition using lasers and welding wires. The manufacturing industry will be able to benefit from it by building more robust processes that meet strict quality standards.

Dr. Yongcui explained, "We are the first team to introduce deformable mirror technology into this application. This type of mirror optical component can withstand several kilowatts of laser power, and with the help of computer vision and human AI technology, the laser beam can adjust its shape in real time according to the dynamic changes in the joint gap.

At present, the manufacturing industry faces many challenges in high-power laser welding without filler wire. Due to the variation of joint gap width, defects often occur during the welding process.

Dynamic laser beam forming
Dr. Yongcui stated, "In order to achieve a robust and defect free joint, the shape of the laser beam needs to adapt to changes in the width of the weld seam. With this technology, the laser beam can dynamically change its shape during the welding process, filling a gap of 0.6 millimeters when processing a 2mm thick steel plate. The shape of the laser beam can be changed within 10 microseconds, and by using multiple elliptical laser beam shapes, we can significantly improve the welding quality compared to traditional circular static laser beams. Test data shows that this method can reduce the deformation degree of the workpiece by 80%.

In addition, researchers also tested a new technology of directional energy deposition using lasers and welding wires, and the results showed that dynamic laser beam forming technology can provide a more efficient and reliable processing technology for high-power lasers.

Save time and money
The researchers stated, "The results of this study indicate that dynamic laser beam forming technology has great potential in the fields of laser welding and directed energy deposition combining laser and welding wire. This technology not only improves the flexibility of the process, but also achieves higher quality. In addition, it can significantly reduce material waste and energy consumption, saving time and money.

Western University has collaborated with Italian company Dynamic Optics to develop this deformable mirror. Dynamic Optics mainly manufactures mirror optical components for high-end telescopes used by astronomers. This mirror technology was first developed by the University of Padua in Italy in the 1950s, and since then, it has improved the ability of telescopes to capture clear images of stars, planets, and other celestial bodies.

Customized mirror design
Dr. Yongcui stated, "The mirrors used in our project are customized for specific applications, and integrating, debugging, and validating the prototype equipment using this cutting-edge technology is the most challenging and time-consuming part of this research." Dr. Yongcui also collaborates with industrial partners such as GKN Aerospace, Brogren Industries, and Procada. This technology has attracted widespread attention from industries related to high-power lasers, including next-generation aircraft engines, electric vehicles, and other industrial application manufacturers with strict technical requirements. "Currently, we still need further research to ensure that this technology can achieve large-scale production in the coming years.

Source: Yangtze River Delta Laser Alliance

Gerelateerde aanbevelingen
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    Bekijk vertaling
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    Bekijk vertaling
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    Bekijk vertaling
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    Bekijk vertaling
  • Iron Triangle releases fiber Bragg gratings and arrays based on multi-core fibers

    T35 multi-core fiber grating and T103 multi-core fiber grating arrays can be engraved into all fiber cores in physical locations, or only onto certain fiber cores.They can also have the same wavelength, or they can have all different wavelengths at the same physical location along the fiber or at different physical locations along the fiber.T35 and T103 are very suitable for projects that require...

    2023-10-28
    Bekijk vertaling