Nederlands

Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

936
2023-09-15 15:19:48
Bekijk vertaling

Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal of the American Ceramic Society.

At present, aluminum phosphate glass is widely used in many fields, including biomedical materials, optical components, sealing materials, and nuclear waste solidification. There have been many studies on the short range structure of aluminum phosphate glass through experimental techniques, but the relationship between its properties and the medium range structure is still unclear. Molecular dynamics simulation has become an effective tool for research, playing an increasingly important role in revealing the structural origins of glass properties.

In this study, researchers combined experimental and molecular dynamics simulation methods to study the effect of Al2O3 on the short and medium range structures of aluminum phosphate glass, and established its structural property model using QSPR method. The accuracy of the simulation was verified through experimental results such as Raman and synchrotron radiation.

The simulation results indicate that the P-O-P bonds present in the glass network are gradually replaced by P-O-Al bonds as the Al2O3 content changes, playing an important role in the performance changes of the glass. Meanwhile, the long chains in aluminum phosphate glass are prone to form circular structures and are concentrated in the 4 to 20 membered rings. In addition, the QSPR model was established using three different structural descriptors and successfully correlated experimental data with simulation results, demonstrating good model predictability. This method provides new ideas for predicting glass properties and designing glass components.

Figure 1 establishes a quantitative structure performance relationship model using the (a) coordination number (CN), (b) Qn, and (c) ring size of aluminum phosphate glass as structural inputs. The columns from left to right show the relationship between the structural descriptor Fnet and experimental density, hardness, glass transition temperature, and thermal expansion coefficient, respectively.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Gerelateerde aanbevelingen
  • Laser power supply leading enterprise Lianming Power has completed a B-round financing of tens of millions of RMB

    Shenzhen Lianming Power Supply Co., Ltd. (hereinafter referred to as "Lianming Power") announced the completion of a B-round financing of tens of millions of yuan in the near future. The fund managed by Jiangsu Jiuyu Investment Management Co., Ltd. completed the A-round investment in Lianming Power in December 2021. Recently, Jiuyu Investment, as an old shareholder, continued to increase its inves...

    2023-09-23
    Bekijk vertaling
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Bekijk vertaling
  • New type of "dynamic static dual sensing" charge coupled phototransistor

    With the development of cutting-edge technologies such as automatic guidance and embodied intelligence, machine vision has put forward higher requirements for image acquisition, requiring precise recording of static images and the ability to sensitively capture dynamic changes in the scene. The existing dynamic and active pixel sensor technology integrates two functions: dynamic event detection an...

    04-17
    Bekijk vertaling
  • Sweden's powerful laser system generates ultra short laser pulses

    For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.Umeå’s laser is 11 m long and generates very short pulses László Vei...

    08-20
    Bekijk vertaling
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    Bekijk vertaling