English

LASER World of PHOTONICS CHINA- 20th Anniversary Celebration Coming Soon!

1396
2025-03-10 15:47:08
See translation

The Annual Grand Event for the Laser, Optics, and Optoelectronics Industry in Asia

LASER World of PHOTONICS CHINA

20th Anniversary Celebration Coming Soon!

? March 11-13
? Shanghai New International Expo Centre (SNIEC), Entrance Hall 3
? Halls: N1-N5, E7-E4
? 1,400+ exhibitors across over 100,000 square meters

 

Visitor Opening Hours

  • Day 1: March 11 (Tuesday) 9:00 - 17:00
  • Day 2: March 12 (Wednesday) 9:00 - 17:00
  • Day 3: March 13 (Thursday) 9:00 - 16:00

Entry Process for Overseas Visitors & Those from Hong Kong, Macau, and Taiwan

1️⃣ Print your badge at the self-service kiosk with your registration confirmation code OR collect it at the visitor registration counter with your passport, Mainland Travel Permit for Hong Kong and Macau Residents, or Taiwan Compatriot Permit.
2️⃣ Scan your badge at the turnstiles to enter the exhibition hall.

Exhibition Hall Layout Map

Exhibition Venue

? Shanghai New International Expo Centre (SNIEC)
? Address: No. 2345 Longyang Road, Pudong New Area, Shanghai

? Two Entrance Halls:

  • Entrance Hall 3 → Direct access to E7 and N5 Halls
  • Entrance Hall 2 → Direct access to N1 Hall

Recommended Transportation Options

Choose the most convenient mode of transport to Shanghai New International Expo Centre, and we recommend entering through the East Entrance Hall to join our special anniversary check-in event! You can also enter via the North Entrance Hall.

? By Metro:
Take Metro Line 7 to the terminal station, Huamu Road Station, then walk to Entrance Hall 2 (North Hall) for access to LASER World of PHOTONICS CHINA.

? By Taxi:
Set your drop-off point to either:

  • Entrance Hall 3 (East Hall)
  • Entrance Hall 2 (North Hall)

? By Car:

  • P1 & P2 parking lots are recommended for private cars.
    • P1: Located at Entrance Hall 3 (Main Entrance).
    • P2: Closer to the Optics Hall, with a fast-track entrance.
    • P3: Reserved for buses only during the exhibition.
Related Recommendations
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    See translation
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    See translation
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    See translation
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    See translation
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    See translation