English

The world's first tunable wavelength blue semiconductor laser

1773
2024-11-23 11:06:56
See translation

Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Letters.

 



Figure 1 (a) Schematic diagram of a tunable single-mode laser with periodic slotted structure; (b) Cross sectional side view of slotted channel. Source: Taisei Kusui, Takumi Wada, Naritoshi Matsushita et al., "Continuous wave operation of InGaN tunable single mode laser with periodically slotted structure", Applied Physics Express (2024)

Researchers from Osaka University in Japan have previously demonstrated that a transverse quasi phase matching device made of aluminum nitride and a vertical microcavity wavelength conversion device containing SrB4O7 nonlinear optical crystals can generate far ultraviolet second harmonic (SHG) at wavelengths below 230 nm.

Usually, these advanced devices require large and expensive ultra short pulse lasers as excitation sources. However, achieving practical far ultraviolet light sources requires a blue semiconductor laser with a wavelength of approximately 460 nm.

Blue nitride semiconductor lasers were originally designed for blue light technology and have now expanded to the processing of metal materials such as copper and gold, with the potential to be applied in the next generation of laser display technology. However, the oscillation wavelengths of these blue light lasers are usually multiple.

Efficient wavelength conversion devices have a very narrow wavelength receiving bandwidth, making single wavelength lasers an ideal excitation source. In addition, precise wavelength control and adjustability are also essential. Although several single wavelength blue light lasers with coarse periodic structures have been reported, none of them can achieve tunable wavelength control.

Our tunable wavelength nitride semiconductor laser oscillates in the 405 nm wavelength band, but its structure can also be easily adjusted to 460 nm, "explained Kusui Taisei, the lead author of the research team." Combined with our new wavelength conversion device, this laser can create a compact and practical far ultraviolet light source suitable for continuous use in indoor environments, effectively sterilizing and disinfecting.

With its compact design and longer lifespan, this technology can be seamlessly integrated into household appliances such as refrigerators and air conditioners, providing healthier and safer living conditions for the home environment and bringing extensive benefits to public health.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    See translation
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    See translation
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    See translation
  • Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

    Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in ...

    08-22
    See translation
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    See translation