English

Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

289
2024-11-09 11:12:32
See translation

High power laser diodes will be key components of future fusion power plants.
Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.

The project will last for three years and receive funding support of 17.3 million euros. Its goal is to promote the application of high-power laser diodes in fusion power plants, which the German government expects to be built as early as the 2040s.

The DioHELIOS project brings together top institutions and laser optoelectronic manufacturers such as ams OSRAM, Ferdinand Brown Institute (FBH), Leibniz Institute for High Frequency Technology (HZDR), Fraunhofer Institute for Laser Technology (ILT), Jenoptik, Laserline, and TRUMPF to enhance the power and efficiency of high-power laser diodes and develop automated mass production processes to meet the enormous energy demand generated by laser inertial confinement fusion.


The above figure shows the most advanced diode stack, consisting of 25 semiconductor bars, with a focusing lens in the front and active cooling at the back. (Image source: TRUMPF)

The core of the project is to develop a beam shaping diode laser module for high-energy laser pumping plate stack amplifiers, which is considered a key component of future nuclear fusion power plants and is supported by the Fraunhofer Institute for Laser Technology (ILT) in Germany.

The project goal is to increase pulse efficiency by 50 times while improving overall efficiency and ensuring uniformity and stability of spectral characteristics. In addition, the project also pursues mass production at a cost of less than 1 cent per watt of power, and hopes that the hardware can operate stably for 30 years at a repetition rate of about 15 hertz.

During the project execution, Laserline and TRUMPF will build different pump modules for high-power laser pumping in the initial demonstrator. The alliance is committed to pushing diode laser based pump modules to the megawatt range.

Jenoptik, Osram, and Ferdinand Brown Institute (FBH), as leading manufacturers and developers of laser diodes, will contribute their expertise to drive innovation in semiconductor laser technology.

The Fraunhofer Institute for Laser Technology (ILT) in Germany uses its SEMSIS software to design and optimize diode laser rods, significantly increasing the output power of chips and ensuring their industrial production at the required cost level and resource efficiency.

The project team is seeking new design methods for diode lasers required for nuclear fusion power plants to stabilize the spectral distribution of laser beams and increase light production through a "multi junction" mode. They plan to significantly improve the efficiency of electron to photon conversion by stacking multiple active regions.

The optimized diode laser chip will be sent to TRUMPF, Laserline, and Jenoptik for building a diode laser stack with high packaging density and high irradiance. An efficient cooling system is crucial for ensuring long lifespan and avoiding temperature induced spectral drift. These stacks will serve as building blocks for pump modules, arranged in a two-dimensional array.

In addition, project partners are also studying the potential of optimizing current drivers to provide current pulses exceeding 1000 amperes and minimize losses as much as possible.

Meanwhile, the Fraunhofer Institute for Laser Technology (ILT) in Germany is developing specially optimized optical devices for automated assembly to collimate and homogenize beam profiles.

Optical components based on welding can achieve long-term stable beam shaping. In the future, AI will accelerate the adjustment of micro optics to achieve the required quantity of commercial power plants and reduce unit costs. (Image source: Fraunhofer ILT)
Ultimately, these partners will evaluate the scalability of the module to achieve higher output and pulse energy, while controlling system costs.

From: Yangtze River Delta Laser Alliance

Related Recommendations
  • Screen Innovation Launches Short Focus Elevated Electric Laser TV Projection Screen

    Screen Innovations has added a short focal lift electric screen solution to its component and material series, meeting the growing demand for large but hidden displays in small media rooms and company boards.Unlike traditional projection systems that require sufficient distance from the projector to the screen or perform best in a darkroom, pop-up laser TVs are only a few inches away from short fo...

    2023-10-27
    See translation
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    See translation
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    See translation
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    See translation
  • Surface coupled laser technology manufacturer, secured £ 2.94 million in financing

    Recently, renowned surface coupled laser technology supplier Vector Photonics announced that it has received £ 1.667 million in equity investment and £ 1.27 million in additional research funding for the continued commercialization of its unique surface coupled laser (SCL) technology. Surface coupled lasers have completely changed semiconductor laser manufacturing, improving the performance of var...

    2024-06-14
    See translation