English

Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

409
2024-10-28 11:56:42
See translation

Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting diode based on two-dimensional perovskite and combined with low-temperature van der Waals transfer technology, achieving a quantum efficiency of over 10% at room temperature. The related results were published in Science Advances under the title "Van der Waals integrated single functional light emitting diodes exceeding 10% quantum efficiency at room temperature".

At present, the main bottleneck in the development of optoelectronic integrated chips is the lack of high-performance on-chip light sources. Among numerous material systems, two-dimensional semiconductor materials have become an ideal material for building new generation optoelectronic systems and breaking through the bottleneck of high-performance on-chip light sources due to their excellent optoelectronic properties and integration advantages. Although significant progress has been made in two-dimensional semiconductor based light-emitting diode devices at present, their luminous efficiency at room temperature and high injection state is generally low, which limits their practical application in optoelectronic chips.

This study utilizes the characteristics of two-dimensional semiconductor materials with multiple quantum wells and combines them with low-temperature van der Waals transfer technology to achieve on-chip integrated high-efficiency light-emitting diodes. By utilizing the advantages of the two-dimensional perovskite multi quantum well structure and high fluorescence quantum yield, combined with the low potential barrier height of the graphene/two-dimensional perovskite interface, an external quantum efficiency of over 10% at room temperature has been achieved through efficient carrier tunneling recombination process, which is the highest level of current van der Waals light-emitting diodes. This scheme has universality and can be extended to other layered two-dimensional materials. This achievement lays a solid foundation for the future development of large-area, high-efficiency, high brightness, and on-chip integrated two-dimensional semiconductor light-emitting devices.

Ni Zhenhua, Lv Junpeng, Liu Hongwei, and Zhou Peng are the co corresponding authors of this article. Hu Zhenliang, a postdoctoral fellow at the School of Physics, Southeast University, and Fu Qiang, a doctoral student, are co first authors of this article. This work is supported by projects such as the National Key Research and Development Program, the National Natural Science Foundation of China, and the Jiangsu Provincial Natural Science Foundation.

Source: Opticsky

Related Recommendations
  • It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

    According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, auto...

    2023-08-10
    See translation
  • Scientists at Peking University invent ultra-thin optical crystals for next-generation laser technology

    BEIJING, Dec. 19 (Xinhua) -- A team of Chinese researchers used a novel theory to invent a new type of ultrathin optical crystal with high energy efficiency, laying the foundation for next-generation laser technology.This photo taken on Dec. 15, 2023 shows a Twist Boron Nitride (TBN) crystal placed on a piece of fused silica in Peking University, Beijing, capital of China. A team of Chinese rese...

    2023-12-20
    See translation
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    See translation
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    See translation
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    See translation