English

Hamamatsu Photonics completes construction of new factory area

218
2024-08-01 14:22:45
See translation

Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.

Source: Hamamatsu Photonics
It is reported that Hamamatsu Photonics focuses on the development, manufacturing, and sales of semiconductor lasers, laser oscillators, and application products using various lasers in the fields of measurement, analysis, processing, FA, medical, etc. After the completion of the new factory, its semiconductor laser assembly and post-processing processes will be integrated into the new plant, with an expected annual production capacity of about 25 million units (equivalent to a single chip).

The factory started construction in May 2023, was completed in July 2024, and started production in November. The total investment is approximately 4.1 billion yen (equivalent to 194 million yuan), with a total construction area of 6720 square meters, expected to accommodate about 160 employees.

For the construction of the new factory, Hamamatsu Photonics stated that it will optimize the workflow between manufacturing processes, while introducing the most advanced manufacturing and testing equipment to promote process automation and efficiency, and improve productivity.

As is well known, semiconductor lasers are the core components of high-performance sensor LiDAR. In recent years, the application of LiDAR technology in the automotive industry has been rapidly expanding, especially with the popularity of autonomous driving and ADAS (Advanced Driver Assistance Systems), greatly driving the growth of the LiDAR market.

According to YOLE data, the global market size of automotive LiDAR has reached $538 million in 2023, and it is expected to grow to $3.632 billion in 2029, with a compound annual growth rate of up to 38%. This indicates that the LiDAR market will maintain a strong growth trend in the coming years.

With the rapid growth of the LiDAR market, there will also be a surge in demand for semiconductor lasers. Hamamatsu Photonics is building a new factory to meet this market demand and expand the sales of semiconductor lasers.

However, some in the industry believe that although the new factory of Hamamatsu Photonics was completed in July, the production increase has been delayed, which may mean that the demand growth for laser radar used in autonomous driving has been postponed, and the speed of equipment introduction will be slower than initially expected.

In addition to the completion of the new factory, recently Hamamatsu Photonics also completed the acquisition of NKT Photonics, a Danish manufacturer of high-performance fiber lasers and photonic crystal fibers.

This acquisition stems from Hamamatsu Photonics' strategic acquisition of NKT Photonics for 205 million euros in June 2022. In May 2023, the Danish government temporarily shelved the acquisition on national security grounds. In response to this, Hamamatsu Photonics did not give up, but took further action and finally acquired NKT Photonics in early June this year. After two years, NKT Photonics has now been acquired by Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.

However, it is puzzling that before completing the acquisition, NKT Photonics was sued in the local federal court on April 17, 2024. Omni Continuum LLC (a company owned by Professor Mohammed N. Islam at the University of Michigan) accuses NKT Photonics of infringing two technology patents related to its "multi-stage supercontinuum" laser in industrial, medical, defense, and quantum applications, and claims at least $18 million. However, the latest developments in this patent infringement case have not yet been announced.

Source: OFweek

Related Recommendations
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    See translation
  • A professor from Sun Yat sen University proposes a new clean energy technology for laser manufacturing

    Energy conversion technology is an important research direction in modern science and engineering. Scientists are exploring new catalytic chemical methods to achieve the conversion of energy chemicals, such as photocatalysis and electrocatalysis. However, these highly anticipated catalytic chemistry technologies still have some problems in practical applications, and there is still a certain dista...

    2024-06-13
    See translation
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    See translation
  • LightSolver announces the launch of the LPU100 laser computing system

    LightSolver, a laser based computing company, announced that it is a breakthrough in quantum inspired high-performance computing.Its LPU100 system utilizes the power of 100 lasers to solve optimization problems, challenging the processing time of quantum and supercomputers. The laser array of LPU100 represents 100 continuous variables and can solve up to 120100 combinations of problems, enabling ...

    2024-03-22
    See translation
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    See translation