English

Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

414
2024-07-23 11:31:18
See translation

Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer testing".

High precision optical components have been fully applied in fields such as laser technology, optical communication, medical imaging, astronomy and space exploration, semiconductor manufacturing, and scientific research. The use of interferometers is currently the main method for high-precision optical detection. In order to obtain the true surface shape error of the test component, the wavefront calibration method must be used to calibrate the wavefront error of the interferometer test. However, there is currently no complete method for wavefront calibration in optical processing.

Figure 1. Ring error generation

 


Figure 2. Results of Ring Error Repair

In this work, the research team proposed a new high-precision optical surface wavefront correction method to address the difference between wavefront error in Fizeau interferometer testing and actual surface error. The main content includes fitting optical surface function parameters, correcting lateral distortion, eliminating misalignment errors, and calculating concave surface errors. And the error of this method was analyzed in depth from the aspects of function parameter fitting, ray tracing, interpolation, etc. The wavefront calibration of the off-axis parabolic mirror in the zero position test configuration proves the effectiveness of this method. The results showed that the circular error generated by the experiment was significantly reduced, and the off-axis error increased from 0.23 λ to 0.05 λ (λ=632.8nm). The PV deviation from the non spherical surface exceeded 8.5mm. This study is of great significance in the high-precision optical component detection process.

Source: Shanghai Institute of Optics and Fine Mechanics

Related Recommendations
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    See translation
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    See translation
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    See translation
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    See translation
  • OPO laser testing optical components

    Optical parametric oscillator laser tests fibers and components to characterize the spectral response of optical components, thereby providing a competitive advantage in the optical industry.OPO lasers have long been used in complex testing and measurement applications, such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these "tunable" pulse lasers are being used to facilitat...

    2024-02-20
    See translation